
## Elisabetta Esposito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6422865/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Lipid Nanostructures for Antioxidant Delivery. Antioxidants, 2022, 11, 238.                                                                                                  | 2.2 | О         |
| 2  | Antioxidant-containing monoolein aqueous dispersions: a preliminary study. Drug Delivery and<br>Translational Research, 2022, , 1.                                           | 3.0 | 3         |
| 3  | Natural Polyphenol-Containing Gels against HSV-1 Infection: A Comparative Study. Nanomaterials, 2022, 12, 227.                                                               | 1.9 | 4         |
| 4  | A spectrofluorometric analysis to evaluate transcutaneous biodistribution of fluorescent nanoparticulate gel formulations. European Journal of Histochemistry, 2022, 66, .   | 0.6 | 6         |
| 5  | Ethosomes and Transethosomes as Cutaneous Delivery Systems for Quercetin: A Preliminary Study on<br>Melanoma Cells. Pharmaceutics, 2022, 14, 1038.                           | 2.0 | 24        |
| 6  | Design of propolis-loaded film forming systems for topical administration: The effect of acrylic acid derivative polymers. Journal of Molecular Liquids, 2021, 322, 114514.  | 2.3 | 17        |
| 7  | Challenges in the Physical Characterization of Lipid Nanoparticles. Pharmaceutics, 2021, 13, 549.                                                                            | 2.0 | 44        |
| 8  | Ethosomes and Transethosomes for Mangiferin Transdermal Delivery. Antioxidants, 2021, 10, 768.                                                                               | 2.2 | 44        |
| 9  | Formulative Study and Intracellular Fate Evaluation of Ethosomes and Transethosomes for Vitamin D3<br>Delivery. International Journal of Molecular Sciences, 2021, 22, 5341. | 1.8 | 25        |
| 10 | "Plurethosome―as Vesicular System for Cutaneous Administration of Mangiferin: Formulative Study<br>and 3D Skin Tissue Evaluation. Pharmaceutics, 2021, 13, 1124.             | 2.0 | 10        |
| 11 | Lipid-Based Nanosystems as a Tool to Overcome Skin Barrier. International Journal of Molecular<br>Sciences, 2021, 22, 8319.                                                  | 1.8 | 53        |
| 12 | Mangiferin-Loaded Smart Gels for HSV-1 Treatment. Pharmaceutics, 2021, 13, 1323.                                                                                             | 2.0 | 5         |
| 13 | The Potential of Caffeic Acid Lipid Nanoparticulate Systems for Skin Application: In Vitro Assays to Assess Delivery and Antioxidant Effect. Nanomaterials, 2021, 11, 171.   | 1.9 | 26        |
| 14 | Monolein Aqueous Dispersions as a Tool to Increase Flavonoid Solubility: A Preliminary Study.<br>Proceedings (mdpi), 2021, 78, 25.                                           | 0.2 | 1         |
| 15 | Gallic acid loaded poloxamer gel as new adjuvant strategy for melanoma: A preliminary study.<br>Colloids and Surfaces B: Biointerfaces, 2020, 185, 110613.                   | 2.5 | 25        |
| 16 | Design of Nanosystems for the Delivery of Quorum Sensing Inhibitors: A Preliminary Study. Molecules,<br>2020, 25, 5655.                                                      | 1.7 | 15        |
| 17 | Design and Characterization of Ethosomes for Transdermal Delivery of Caffeic Acid. Pharmaceutics, 2020, 12, 740.                                                             | 2.0 | 46        |
| 18 | Ethosomes for Coenzyme Q10 Cutaneous Administration: From Design to 3D Skin Tissue Evaluation.<br>Antioxidants, 2020, 9, 485.                                                | 2.2 | 32        |

2

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Correlative Imaging Study of in vivo and ex vivo Biodistribution of Solid Lipid Nanoparticles.<br>International Journal of Nanomedicine, 2020, Volume 15, 1745-1758.                                           | 3.3 | 14        |
| 20 | Ellagic Acid Containing Nanostructured Lipid Carriers for Topical Application: A Preliminary Study.<br>Molecules, 2020, 25, 1449.                                                                                | 1.7 | 29        |
| 21 | Nanoparticulate Gels for Cutaneous Administration of Caffeic Acid. Nanomaterials, 2020, 10, 961.                                                                                                                 | 1.9 | 23        |
| 22 | Nanotechnological Strategies for Administration of Poorly Soluble Neuroactive Drugs. Proceedings<br>(mdpi), 2020, 78, .                                                                                          | 0.2 | 1         |
| 23 | Nanomedicines to Treat Skin Pathologies with Natural Molecules. Current Pharmaceutical Design, 2019, 25, 2323-2337.                                                                                              | 0.9 | 30        |
| 24 | Lipid nanostructures for antioxidant delivery: a comparative preformulation study. Beilstein Journal of Nanotechnology, 2019, 10, 1789-1801.                                                                     | 1.5 | 17        |
| 25 | Bioactive Molecules from Vegetable Sources for the Treatment of Cutaneous Pathologies and Disorders Part 2. Current Pharmaceutical Design, 2019, 25, 2313-2313.                                                  | 0.9 | 0         |
| 26 | Bioactive Molecules from Vegetable Sources for the Treatment of Cutaneous Pathologies and Disorders Part 1. Current Pharmaceutical Design, 2019, 25, 2207-2207.                                                  | 0.9 | 0         |
| 27 | Lipid Nanoparticles and Active Natural Compounds: A Perfect Combination for Pharmaceutical Applications. Current Medicinal Chemistry, 2019, 26, 4681-4696.                                                       | 1.2 | 19        |
| 28 | New Strategies for the Delivery of Some Natural Anti-oxidants with Therapeutic Properties.<br>Mini-Reviews in Medicinal Chemistry, 2019, 19, 1030-1039.                                                          | 1.1 | 11        |
| 29 | Thermal Magnetic Field Activated Propolis Release From Liquid Crystalline System Based on Magnetic<br>Nanoparticles. AAPS PharmSciTech, 2018, 19, 3258-3271.                                                     | 1.5 | 23        |
| 30 | Monoolein liquid crystalline phases for topical delivery of crocetin. Colloids and Surfaces B:<br>Biointerfaces, 2018, 171, 67-74.                                                                               | 2.5 | 20        |
| 31 | Production and Characterization of a Clotrimazole Liposphere Gel for Candidiasis Treatment.<br>Polymers, 2018, 10, 160.                                                                                          | 2.0 | 11        |
| 32 | Production and Characterization of Nanoparticle Based Hyaluronate Gel Containing Retinyl Palmitate<br>for Wound Healing. Current Drug Delivery, 2018, 15, 1172-1182.                                             | 0.8 | 13        |
| 33 | Nanostructured lipid carriers (NLC) for the delivery of natural molecules with antimicrobial activity: production, characterisation and <i>in vitro</i> studies. Journal of Microencapsulation, 2017, 34, 63-72. | 1.2 | 38        |
| 34 | Solid lipid nanoparticles for the delivery of 1,3,5-triaza-7-phosphaadamantane (PTA) platinum (II)<br>carboxylates. Materials Science and Engineering C, 2017, 74, 357-364.                                      | 3.8 | 6         |
| 35 | Nanoformulations for dimethyl fumarate: Physicochemical characterization and in vitro / in vivo behavior. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 285-296.                            | 2.0 | 29        |
| 36 | Monoolein aqueous dispersions as a delivery system for quercetin. Biomedical Microdevices, 2017, 19,<br>41.                                                                                                      | 1.4 | 15        |

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Microparticles containing gallic and ellagic acids for the biological control of bacterial diseases of kiwifruit plants. Journal of Plant Diseases and Protection, 2017, 124, 563-575.                                                                           | 1.6 | 11        |
| 38 | L-dopa co-drugs in nanostructured lipid carriers: A comparative study. Materials Science and Engineering C, 2017, 72, 168-176.                                                                                                                                   | 3.8 | 20        |
| 39 | Lipid nanoparticles for administration of poorly water soluble neuroactive drugs. Biomedical Microdevices, 2017, 19, 44.                                                                                                                                         | 1.4 | 22        |
| 40 | Data on scaling up and in vivo human study of progesterone lipid nanoparticles. Data in Brief, 2017, 14,<br>639-642.                                                                                                                                             | 0.5 | 2         |
| 41 | Progesterone lipid nanoparticles: Scaling up and in vivo human study. European Journal of<br>Pharmaceutics and Biopharmaceutics, 2017, 119, 437-446.                                                                                                             | 2.0 | 29        |
| 42 | Nanostructured lipid systems modified with waste material of propolis for wound healing: Design, in vitro and in vivo evaluation. Colloids and Surfaces B: Biointerfaces, 2017, 158, 441-452.                                                                    | 2.5 | 57        |
| 43 | Natural antimicrobials in spray-dried microparticles based on cellulose derivatives as potential eco-compatible agrochemicals. Journal of Plant Diseases and Protection, 2017, 124, 269-278.                                                                     | 1.6 | 12        |
| 44 | Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Materials Science and Engineering C, 2017, 71, 669-677.                                                                            | 3.8 | 49        |
| 45 | Nafion®-Containing Solid Lipid Nanoparticles as a Tool for Anticancer Pt Delivery: Preliminary<br>Studies. Journal of Chemistry, 2017, 2017, 1-6.                                                                                                                | 0.9 | 4         |
| 46 | Ethosomes and organogels for cutaneous administration of crocin. Biomedical Microdevices, 2016, 18, 108.                                                                                                                                                         | 1.4 | 26        |
| 47 | Encapsulation of cannabinoid drugs in nanostructured lipid carriers. European Journal of<br>Pharmaceutics and Biopharmaceutics, 2016, 102, 87-91.                                                                                                                | 2.0 | 39        |
| 48 | Gelified reverse micellar dispersions as percutaneous formulations. Journal of Drug Delivery Science and Technology, 2016, 32, 270-282.                                                                                                                          | 1.4 | 3         |
| 49 | Structural Studies of Lipid-Based Nanosystems for Drug Delivery: X-ray Diffraction (XRD) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). , 2016, , 861-889.                                                                                           |     | 4         |
| 50 | Cubic Phases, Cubosomes and Ethosomes for Cutaneous Application. Current Pharmaceutical Design, 2016, 22, 5382-5399.                                                                                                                                             | 0.9 | 13        |
| 51 | Effect of new curcuminâ€containing nanostructured lipid dispersions on human keratinocytes<br>proliferative responses. Experimental Dermatology, 2015, 24, 449-454.                                                                                              | 1.4 | 21        |
| 52 | Production, Physico-Chemical Characterization and Biodistribution Studies of Lipid Nanoparticles.<br>Journal of Nanomedicine & Nanotechnology, 2015, 06, .                                                                                                       | 1.1 | 9         |
| 53 | Lipid-based nanoparticles containing cationic derivatives of PTA (1,3,5-triaza-7-phosphaadamantane) as<br>innovative vehicle for Pt complexes: Production, characterization and in vitro studies. International<br>Journal of Pharmaceutics, 2015, 492, 291-300. | 2.6 | 7         |
| 54 | Cannabinoid antagonist in nanostructured lipid carriers (NLCs): design, characterization and in vivo<br>study. Materials Science and Engineering C, 2015, 48, 328-336.                                                                                           | 3.8 | 43        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Biodistribution of nanostructured lipid carriers: A tomographic study. European Journal of<br>Pharmaceutics and Biopharmaceutics, 2015, 89, 145-156.                                                                       | 2.0 | 29        |
| 56 | Lipid nanocarriers containing a levodopa prodrug with potential antiparkinsonian activity. Materials<br>Science and Engineering C, 2015, 48, 294-300.                                                                      | 3.8 | 11        |
| 57 | Structural Studies of Lipid-Based Nanosystems for Drug Delivery: X-ray Diffraction (XRD) and Cryogenic Transmission Electron Microscopy (Cryo-TEM). , 2015, , 1-23.                                                        |     | 3         |
| 58 | Polymeric microparticles for fenretinide administration. Macromolecular Symposia, 2014, 345, 14-23.                                                                                                                        | 0.4 | 0         |
| 59 | Cationic lipid nanosystems as carriers for nucleic acids. New Biotechnology, 2014, 31, 44-54.                                                                                                                              | 2.4 | 35        |
| 60 | Effect of nanostructured lipid vehicles on percutaneous absorption of curcumin. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 121-132.                                                                 | 2.0 | 41        |
| 61 | Curcumin containing monoolein aqueous dispersions: A preformulative study. Materials Science and Engineering C, 2013, 33, 4923-4934.                                                                                       | 3.8 | 42        |
| 62 | Intranasal immunization in mice with non-ionic surfactants vesicles containing HSV immunogens: A preliminary study as possible vaccine against genital herpes. International Journal of Pharmaceutics, 2013, 440, 229-237. | 2.6 | 31        |
| 63 | Evaluation of Monooleine Aqueous Dispersions as Tools for Topical Administration of Curcumin:<br>Characterization, In Vitro and Ex-Vivo Studies. Journal of Pharmaceutical Sciences, 2013, 102, 2349-2361.                 | 1.6 | 42        |
| 64 | Clotrimazole-loaded nanostructured lipid carrier hydrogels: Thermal analysis and in vitro studies.<br>International Journal of Pharmaceutics, 2013, 454, 695-702.                                                          | 2.6 | 70        |
| 65 | Design and characterization of fenretinide containing organogels. Materials Science and Engineering C, 2013, 33, 383-389.                                                                                                  | 3.8 | 14        |
| 66 | Clotrimazole nanoparticle gel for mucosal administration. Materials Science and Engineering C, 2013, 33, 411-418.                                                                                                          | 3.8 | 58        |
| 67 | Analysis of the Drug Release Profiles from Formulations Based on Micro and Nano Systems. Current<br>Analytical Chemistry, 2013, 9, 37-46.                                                                                  | 0.6 | 4         |
| 68 | Nanoparticulate lipid dispersions for bromocriptine delivery: Characterization and in vivo study.<br>European Journal of Pharmaceutics and Biopharmaceutics, 2012, 80, 306-314.                                            | 2.0 | 106       |
| 69 | Analysis of the Drug Release Profiles from Formulations Based on Micro and Nano Systems. Current<br>Analytical Chemistry, 2012, 9, 37-46.                                                                                  | 0.6 | 1         |
| 70 | Long-chain cationic derivatives of PTA (1,3,5-triaza-7-phosphaadamantane) as new components of potential non-viral vectors. International Journal of Pharmaceutics, 2012, 431, 176-182.                                    | 2.6 | 10        |
| 71 | Eudragit <sup>®</sup> microparticles for the release of budesonide: A comparative study. Indian<br>Journal of Pharmaceutical Sciences, 2012, 74, 403.                                                                      | 1.0 | 17        |
| 72 | Colloidal dispersions for the delivery of acyclovir: A comparative study. Indian Journal of<br>Pharmaceutical Sciences, 2011, 73, 687.                                                                                     | 1.0 | 16        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effect of charge and lipid concentration on in-vivo percutaneous absorption of methyl nicotinate from liposomal vesicles. Journal of Pharmacy and Pharmacology, 2010, 57, 1169-1176. | 1.2 | 10        |
| 74 | Evaluation of Percutaneous Absorption of Naproxen from Different Liposomal Formulations. Journal of Pharmaceutical Sciences, 2010, 99, 2819-2829.                                    | 1.6 | 31        |
| 75 | Liposomes- and ethosomes-associated distamycins: a comparative study. Journal of Liposome Research, 2010, 20, 277-285.                                                               | 1.5 | 26        |
| 76 | Distamycins: Strategies for Possible Enhancement of Activity and Specificity. Mini-Reviews in Medicinal Chemistry, 2010, 10, 218-231.                                                | 1.1 | 10        |
| 77 | Solid Lipid Nanoparticles as Delivery Systems for Bromocriptine. Pharmaceutical Research, 2008, 25, 1521-1530.                                                                       | 1.7 | 164       |
| 78 | Acyclovir delivery systems. Expert Opinion on Drug Delivery, 2008, 5, 1217-1230.                                                                                                     | 2.4 | 27        |
| 79 | Eudragit® microparticles as a possible tool for ophthalmic administration of acyclovir. Journal of Microencapsulation, 2007, 24, 445-456.                                            | 1.2 | 15        |
| 80 | Non-phospholipid vesicles as carriers for peptides and proteins: Production, characterization and stability studies. International Journal of Pharmaceutics, 2007, 339, 52-60.       | 2.6 | 26        |
| 81 | Nanosystems for skin hydration: a comparative study. International Journal of Cosmetic Science, 2007, 29, 39-47.                                                                     | 1.2 | 24        |
| 82 | Hyaluronan-based microspheres as tools for drug delivery: a comparative study. International Journal of Pharmaceutics, 2005, 288, 35-49.                                             | 2.6 | 97        |
| 83 | Cellulose acetate butyrate microcapsules containing dextran ion-exchange resins as self-propelled drug release system. Biomaterials, 2005, 26, 4337-4347.                            | 5.7 | 57        |
| 84 | Cubosome Dispersions as Delivery Systems for Percutaneous Administration of Indomethacin.<br>Pharmaceutical Research, 2005, 22, 2163-2173.                                           | 1.7 | 237       |
| 85 | Production of Lipospheres for Bioactive Compound Delivery. , 2004, , 23-40.                                                                                                          |     | 2         |
| 86 | Cationic Lipospheres as Delivery Systems for Nucleic Acid Molecules. , 2004, , 143-159.                                                                                              |     | 0         |
| 87 | Ethosomes and liposomes as topical vehicles for azelaic acid: a preformulation study. Journal of Cosmetic Science, 2004, 55, 253-64.                                                 | 0.1 | 34        |
| 88 | Lipid-based supramolecular systems for topical application: A preformulatory study. AAPS PharmSci, 2003, 5, 62-76.                                                                   | 1.3 | 141       |
| 89 | Multifunctional microcapsules for pancreatic islet cell entrapment: design, preparation and in vitro characterization. Biomaterials, 2003, 24, 3101-3114.                            | 5.7 | 29        |
| 90 | Amphiphilic association systems for Amphotericin B delivery. International Journal of Pharmaceutics, 2003, 260, 249-260.                                                             | 2.6 | 20        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effect of long-term stabilization of cationic liposomes as defibrotide delivery system for antithrombotic activity. Drug Development Research, 2002, 55, 127-138.                                                                              | 1.4 | 2         |
| 92  | Spray dried Eudragit microparticles as encapsulation devices for vitamin C. International Journal of Pharmaceutics, 2002, 242, 329-334.                                                                                                        | 2.6 | 90        |
| 93  | Acrylic microspheres for oral controlled release of the biguanide buformin. International Journal of Pharmaceutics, 2001, 218, 13-25.                                                                                                          | 2.6 | 8         |
| 94  | Pectinâ€Based Microspheres. Annals of the New York Academy of Sciences, 2001, 944, 160-179.                                                                                                                                                    | 1.8 | 23        |
| 95  | Liposomes as carriers for DNA–PNA hybrids. Journal of Controlled Release, 2000, 68, 237-249.                                                                                                                                                   | 4.8 | 56        |
| 96  | Production of Eudragit Microparticles by Spray-Drying Technique: Influence of Experimental<br>Parameters on Morphological and Dimensional Characteristics. Pharmaceutical Development and<br>Technology, 2000, 5, 267-278.                     | 1.1 | 82        |
| 97  | In Vitro Antiproliferative Activity of Isothiocyanates and Nitriles Generated by Myrosinase-Mediated<br>Hydrolysis of Glucosinolates from Seeds of Cruciferous Vegetables. Journal of Agricultural and<br>Food Chemistry, 2000, 48, 3572-3575. | 2.4 | 71        |
| 98  | Dextran cross-linked gelatin microspheres as a drug delivery system. European Journal of<br>Pharmaceutics and Biopharmaceutics, 1999, 47, 153-160.                                                                                             | 2.0 | 66        |
| 99  | Preparation and characterization of Ca-alginate microspheres by a new emulsification method.<br>International Journal of Pharmaceutics, 1998, 170, 11-21.                                                                                      | 2.6 | 79        |
| 100 | In VitroCytotoxic Activity of Some Glucosinolate-Derived Products Generated by Myrosinase<br>Hydrolysis. Journal of Agricultural and Food Chemistry, 1996, 44, 1014-1021.                                                                      | 2.4 | 70        |
| 101 | Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA.<br>International Journal of Pharmaceutics, 1996, 139, 69-78.                                                                            | 2.6 | 108       |
| 102 | Celatin microspheres: influence of preparation parameters and thermal treatment on chemico-physical and biopharmaceutical properties. Biomaterials, 1996, 17, 2009-2020.                                                                       | 5.7 | 152       |
| 103 | Gelatin microspheres as a new approach for the controlled delivery of synthetic oligonucleotides and PCR-generated DNA fragments. International Journal of Pharmaceutics, 1994, 105, 181-186.                                                  | 2.6 | 27        |
| 104 | Liposome-associated retinoids: production, characterization and antiproliferative activity on neoplastic cells. European Journal of Pharmaceutical Sciences, 1994, 2, 281-291.                                                                 | 1.9 | 13        |
| 105 | Comparative study on the release kinetics of methyl-nicotinate from topic formulations.<br>International Journal of Pharmaceutics, 1993, 90, 43-50.                                                                                            | 2.6 | 15        |
| 106 | DNA binding activity and inhibition of DNA-protein interactions. Biochemical Pharmacology, 1992, 44, 1985-1994.                                                                                                                                | 2.0 | 8         |