
Robert J Yokelson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6422556/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fine Ashâ€Bearing Particles as a Major Aerosol Component in Biomass Burning Smoke. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	13
2	CFC-11 measurements in China, Nepal, Pakistan, Saudi Arabia and South Korea (1998–2018): Urban, landfill fire and garbage burning sources. Environmental Chemistry, 2022, 18, 370-392.	0.7	0
3	Pre-monsoon submicron aerosol composition and source contribution in the Kathmandu Valley, Nepal. Environmental Science Atmospheres, 2022, 2, 978-999.	0.9	4
4	Wintertime Air Quality in Lumbini, Nepal: Sources of Fine Particle Organic Carbon. ACS Earth and Space Chemistry, 2021, 5, 226-238.	1.2	11
5	Emissions of Trace Organic Gases From Western U.S. Wildfires Based on WEâ€CAN Aircraft Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033838.	1.2	54
6	Ozone chemistry in western U.S. wildfire plumes. Science Advances, 2021, 7, eabl3648.	4.7	45
7	Aerosol Mass and Optical Properties, Smoke Influence on O ₃ , and High NO ₃ Production Rates in a Western U.S. City Impacted by Wildfires. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032791.	1.2	24
8	Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmospheric Chemistry and Physics, 2020, 20, 2927-2951.	1.9	40
9	Carbage Burning in South Asia: How Important Is It to Regional Air Quality?. Environmental Science & Technology, 2020, 54, 9928-9938.	4.6	30
10	Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol. Atmospheric Chemistry and Physics, 2020, 20, 1105-1129.	1.9	115
11	Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US. Atmospheric Chemistry and Physics, 2020, 20, 13319-13341.	1.9	44
12	The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study. Atmospheric Chemistry and Physics, 2020, 20, 8807-8826.	1.9	45
13	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter and sulfur dioxide from vehicles and brick kilns and their impacts on air quality in the Kathmandu Valley, Nepal. Atmospheric Chemistry and Physics, 2019, 19, 8209-8228.	1.9	14
14	Highly Speciated Measurements of Terpenoids Emitted from Laboratory and Mixed-Conifer Forest Prescribed Fires. Environmental Science & Technology, 2019, 53, 9418-9428.	4.6	31
15	Evidence in biomass burning smoke for a light-absorbing aerosol with properties intermediate between brown and black carbon. Aerosol Science and Technology, 2019, 53, 976-989.	1.5	37
16	Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors. Journal of Geophysical Research D: Atmospheres, 2019, 124, 3583-3606.	1.2	67
17	In situ measurements of trace gases, PM, and aerosol optical properties during the 2017 NW US wildfire smoke event. Atmospheric Chemistry and Physics, 2019, 19, 3905-3926.	1.9	45
18	Inter-comparison of black carbon measurement methods for simulated open biomass burning emissions. Atmospheric Environment, 2019, 206, 156-169.	1.9	34

#	Article	IF	CITATIONS
19	Speciated and total emission factors of particulate organics from burning western US wildland fuels and their dependence on combustion efficiency. Atmospheric Chemistry and Physics, 2019, 19, 1013-1026.	1.9	80
20	OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation. Atmospheric Chemistry and Physics, 2019, 19, 14875-14899.	1.9	92
21	(NO _{<i>x</i>}), nitrous acid (HONO), and nitrate (<i>p</i> NO ₃ ^{â from laboratory biomass burning during FIREX. Atmospheric Measurement Techniques. 2019. 12.}	``&a <mark>nip</mark> ;lt;/s	sup>)
22	6303-6317. Air Pollution in the Hindu Kush Himalaya. , 2019, , 339-387.		31
23	Investigating biomass burning aerosol morphology using a laser imaging nephelometer. Atmospheric Chemistry and Physics, 2018, 18, 1879-1894.	1.9	20
24	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of particulate matter from wood- and dung-fueled cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmospheric Chemistry and Physics, 2018, 18, 2259-2286.	1.9	106
25	Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmospheric Chemistry and Physics, 2018, 18, 2585-2600.	1.9	66
26	Aerosol optical properties and trace gas emissions by PAX and OP-FTIR for laboratory-simulated western US wildfires during FIREX. Atmospheric Chemistry and Physics, 2018, 18, 2929-2948.	1.9	103
27	Non-methane organic gas emissions from biomass burning: identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. Atmospheric Chemistry and Physics, 2018, 18, 3299-3319.	1.9	233
28	Primary emissions of glyoxal and methylglyoxal from laboratory measurements of open biomass burning. Atmospheric Chemistry and Physics, 2018, 18, 15451-15470.	1.9	28
29	High- and low-temperature pyrolysis profiles describe volatile organic compound emissions from western US wildfire fuels. Atmospheric Chemistry and Physics, 2018, 18, 9263-9281.	1.9	102
30	Speciated online PM ₁ from South Asian combustion sources – PartÂ1: Fuel-based emission factors and size distributions. Atmospheric Chemistry and Physics, 2018, 18, 14653-14679.	1.9	38
31	Photochemical Cloud Processing of Primary Wildfire Emissions as a Potential Source of Secondary Organic Aerosol. Environmental Science & Technology, 2018, 52, 11027-11037.	4.6	44
32	Characterization of a catalyst-based conversion technique to measure total particulate nitrogen and organic carbon and comparison to a particle mass measurement instrument. Atmospheric Measurement Techniques, 2018, 11, 2749-2768.	1.2	21
33	A dualâ€chamber method for quantifying the effects of atmospheric perturbations on secondary organic aerosol formation from biomass burning emissions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6043-6058.	1.2	41
34	Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6108-6129.	1.2	184
35	In situ measurements of water uptake by black carbonâ€containing aerosol in wildfire plumes. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1086-1097.	1.2	21
36	Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors. Atmospheric Chemistry and Physics, 2017, 17, 1471-1489.	1.9	119

#	Article	IF	CITATIONS
37	Relative importance of black carbon, brown carbon, and absorption enhancement from clear coatings in biomass burning emissions. Atmospheric Chemistry and Physics, 2017, 17, 5063-5078.	1.9	81
38	Global fire emissions estimates during 1997–2016. Earth System Science Data, 2017, 9, 697-720.	3.7	1,159
39	Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign. Environmental Science & Technology, 2016, 50, 8613-8622.	4.6	89
40	Rapidly evolving ultrafine and fine mode biomass smoke physical properties: Comparing laboratory and field results. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5750-5768.	1.2	27
41	Emissions of nitrogenâ€containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers. Geophysical Research Letters, 2016, 43, 9903-9912.	1.5	79
42	Iceâ€nucleating particle emissions from biomass combustion and the potential importance of soot aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5888-5903.	1.2	42
43	Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC ⁴ RS) field mission. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4967-5009.	1.2	158
44	Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources. Atmospheric Chemistry and Physics, 2016, 16, 11043-11081.	1.9	131
45	Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmospheric Chemistry and Physics, 2016, 16, 11711-11732.	1.9	161
46	In situ measurements and modeling of reactive trace gases in a small biomass burning plume. Atmospheric Chemistry and Physics, 2016, 16, 3813-3824.	1.9	81
47	Parameterization of single-scattering albedo (SSA) and absorption Ãngström exponent (AAE) with ECâ€`/â€`OC for aerosol emissions from biomass burning. Atmospheric Chemistry and Physics, 2016, 16, 9549-9561.	1.9	149
48	Agricultural fires in the southeastern U.S. during SEAC ⁴ RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7383-7414.	1.2	93
49	Revealing important nocturnal and dayâ€toâ€day variations in fire smoke emissions through a multiplatform inversion. Geophysical Research Letters, 2015, 42, 3609-3618.	1.5	73
50	Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US. Atmospheric Chemistry and Physics, 2015, 15, 13915-13938.	1.9	177
51	Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 1865-1899.	1.9	154
52	Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes. Atmospheric Chemistry and Physics, 2015, 15, 6323-6335.	1.9	78
53	Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral. Atmospheric Chemistry and Physics, 2015, 15, 6667-6688.	1.9	96
54	Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 845-865.	1.9	266

#	Article	IF	CITATIONS
55	Indoor air pollution from burning yak dung as a household fuel in Tibet. Atmospheric Environment, 2015, 102, 406-412.	1.9	77
56	A New Method to Determine the Number Concentrations of Refractory Black Carbon Ice Nucleating Particles. Aerosol Science and Technology, 2014, 48, 1264-1275.	1.5	14
57	Emissions of Fine Particle Fluoride from Biomass Burning. Environmental Science & Technology, 2014, 48, 12636-12644.	4.6	74
58	Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nature Geoscience, 2014, 7, 647-650.	5.4	407
59	Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste. Environmental Science & Technology, 2014, 48, 9523-9530.	4.6	362
60	Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,826-11,849.	1.2	116
61	Airborne characterization of smoke marker ratios from prescribed burning. Atmospheric Chemistry and Physics, 2014, 14, 10535-10545.	1.9	47
62	Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system. Atmospheric Chemistry and Physics, 2014, 14, 199-215.	1.9	81
63	Trace gas emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire Lab at Missoula Experiment (FLAME-4). Atmospheric Chemistry and Physics, 2014, 14, 9727-9754.	1.9	188
64	Aerosol single scattering albedo dependence on biomass combustion efficiency: Laboratory and field studies. Geophysical Research Letters, 2014, 41, 742-748.	1.5	85
65	Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmospheric Research, 2013, 122, 403-468.	1.8	269
66	Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes. Journal of Physical Chemistry A, 2013, 117, 4096-4107.	1.1	47
67	Pitfalls with the use of enhancement ratios or normalized excess mixing ratios measured in plumes to characterize pollution sources and aging. Atmospheric Measurement Techniques, 2013, 6, 2155-2158.	1.2	71
68	Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmospheric Chemistry and Physics, 2013, 13, 89-116.	1.9	266
69	Measurements of reactive trace gases and variable O ₃ formation rates in some South Carolina biomass burning plumes. Atmospheric Chemistry and Physics, 2013, 13, 1141-1165.	1.9	170
70	Laboratory characterization of PM emissions from combustion of wildland biomass fuels. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9914-9929.	1.2	70
71	Corrigendum to "Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States" published in Atmos. Chem. Phys., 11, 12197–12216, 2011. Atmospheric Chemistry and Physics, 2012, 12, 103-103.	1.9	1
72	Evolution of trace gases and particles emitted by a chaparral fire in California. Atmospheric Chemistry and Physics, 2012, 12, 1397-1421.	1.9	300

#	Article	IF	CITATIONS
73	Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol. Environmental Science & Technology, 2011, 45, 1257-1263.	4.6	44
74	The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 2011, 4, 625-641.	1.3	1,278
75	Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics, 2011, 11, 4039-4072.	1.9	1,527
76	Boreal forest fire emissions in fresh Canadian smoke plumes: C ₁ -C ₁₀ volatile organic compounds (VOCs), CO ₂ , CO, NO ₂ , NO, HCN and CH ₃ CN. Atmospheric Chemistry and Physics, 2011, 11, 6445-6463.	1.9	209
77	Trace gas and particle emissions from open biomass burning in Mexico. Atmospheric Chemistry and Physics, 2011, 11, 6787-6808.	1.9	133
78	Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States. Atmospheric Chemistry and Physics, 2011, 11, 12197-12216.	1.9	140
79	VOC identification and inter-comparison from laboratory biomass burning using PTR-MS and PIT-MS. International Journal of Mass Spectrometry, 2011, 303, 6-14.	0.7	123
80	Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proceedings of the United States of America, 2011, 108, 8966-8971.	3.3	166
81	Correction for Roberts et al., Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17234-17234.	3.3	6
82	Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States. Atmospheric Chemistry and Physics, 2010, 10, 11115-11130.	1.9	218
83	Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmospheric Chemistry and Physics, 2010, 10, 565-584.	1.9	199
84	An infrared spectral database for detection of gases emitted by biomass burning. Vibrational Spectroscopy, 2010, 53, 97-102.	1.2	83
85	Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions. Atmospheric Measurement Techniques, 2010, 3, 981-990.	1.2	152
86	Measurements of gasâ€phase inorganic and organic acids from biomass fires by negativeâ€ion protonâ€transfer chemicalâ€ionization mass spectrometry. Journal of Geophysical Research, 2010, 115, .	3.3	161
87	Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire. Atmospheric Environment, 2009, 43, 438-446.	1.9	67
88	Biomass burning and urban air pollution over the Central Mexican Plateau. Atmospheric Chemistry and Physics, 2009, 9, 4929-4944.	1.9	138
89	Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9, 5785-5812.	1.9	433
90	Biomass burning in Amazonia: Emissions, long-range transport of smoke and its regional and remote impacts. Geophysical Monograph Series, 2009, , 207-232.	0.1	27

Robert J Yokelson

#	Article	IF	CITATIONS
91	Health-related quality-of-life measures for long-term follow-up in children after major trauma. Quality of Life Research, 2008, 17, 701-713.	1.5	67
92	The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data. Atmospheric Chemistry and Physics, 2008, 8, 3509-3527.	1.9	221
93	Corrigendum to "The tropical forest and fire emissions experiment: laboratory fire measurements and synthesis of campaign data" published in Atmos. Chem. Phys., 8, 3509–3527, 2008. Atmospheric Chemistry and Physics, 2008, 8, 4497-4497.	1.9	4
94	The Tropical Forest and Fire Emissions Experiment: overview and airborne fire emission factor measurements. Atmospheric Chemistry and Physics, 2007, 7, 5175-5196.	1.9	212
95	Emissions from forest fires near Mexico City. Atmospheric Chemistry and Physics, 2007, 7, 5569-5584.	1.9	205
96	The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning. Atmospheric Chemistry and Physics, 2007, 7, 5883-5897.	1.9	186
97	The tropical forest and fire emissions experiment: Trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil. Journal of Geophysical Research, 2007, 112, .	3.3	61
98	The tropical forest and fire emissions experiment: Emission, chemistry, and transport of biogenic volatile organic compounds in the lower atmosphere over Amazonia. Journal of Geophysical Research, 2007, 112, .	3.3	206
99	Intercomparison of Two Box Models of the Chemical Evolution in Biomass-Burning Smoke Plumes. Journal of Atmospheric Chemistry, 2006, 55, 273-297.	1.4	40
100	An analysis of the chemical processes in the smoke plume from a savanna fire. Journal of Geophysical Research, 2005, 110, .	3.3	84
101	Heterogeneous chemistry involving methanol in tropospheric clouds. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	35
102	Comprehensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS/FID/ECD. Journal of Geophysical Research, 2004, 109, .	3.3	158
103	Emissions from miombo woodland and dambo grassland savanna fires. Journal of Geophysical Research, 2004, 109, .	3.3	39
104	Emissions of trace gases and particles from two ships in the southern Atlantic Ocean. Atmospheric Environment, 2003, 37, 2139-2148.	1.9	132
105	Trace gas and particle emissions from fires in large diameter and belowground biomass fuels. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	165
106	Trace gas emissions from the production and use of domestic biofuels in Zambia measured by open-path Fourier transform infrared spectroscopy. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	58
107	Trace gas measurements in nascent, aged, and cloud-processed smoke from African savanna fires by airborne Fourier transform infrared spectroscopy (AFTIR). Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	189
108	Emissions of trace gases and particles from savanna fires in southern Africa. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	153

7

#	Article	IF	CITATIONS
109	Tropospheric carbon monoxide measurements from the Scanning High-Resolution Interferometer Sounder on 7 September 2000 in southern Africa during SAFARI 2000. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	19
110	Evolution of gases and particles from a savanna fire in South Africa. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	208
111	Evaluation of adsorption effects on measurements of ammonia, acetic acid, and methanol. Journal of Geophysical Research, 2003, 108, .	3.3	71
112	Distributions of trace gases and aerosols during the dry biomass burning season in southern Africa. Journal of Geophysical Research, 2003, 108, .	3.3	44
113	Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. Journal of Geophysical Research, 2003, 108, .	3.3	369
114	Seasonal variation and ecosystem dependence of emission factors for selected trace gases and PM2.5for southern African savanna fires. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	63
115	Complex effects arising in smoke plume simulations due to inclusion of direct emissions of oxygenated organic species from biomass combustion. Journal of Geophysical Research, 2001, 106, 12527-12539.	3.3	82
116	Measurements of excess O3, CO2, CO, CH4, C2H4, C2H2, HCN, NO, NH3, HCOOH, CH3COOH, HCHO, and CH3OH in 1997 Alaskan biomass burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR). Journal of Geophysical Research, 2000, 105, 22147-22166.	3.3	266
117	Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy. Journal of Geophysical Research, 1999, 104, 30109-30125.	3.3	291
118	Trace gas emissions from laboratory biomass fires measured by open-path Fourier transform infrared spectroscopy: Fires in grass and surface fuels. Journal of Geophysical Research, 1999, 104, 21237-21245.	3.3	99
119	Photodissociation of ClONO2:Â 2. Time-Resolved Absorption Studies of Product Quantum Yields. Journal of Physical Chemistry A, 1997, 101, 6667-6678.	1.1	16
120	Emissions from smoldering combustion of biomass measured by open-path Fourier transform infrared spectroscopy. Journal of Geophysical Research, 1997, 102, 18865-18877.	3.3	314
121	Open-path Fourier transform infrared studies of large-scale laboratory biomass fires. Journal of Geophysical Research, 1996, 101, 21067-21080.	3.3	340
122	Temperature Dependent Rate Coefficient for the Cl + ClONO2 Reaction. The Journal of Physical Chemistry, 1995, 99, 13976-13983.	2.9	15
123	Temperature Dependence of the NO3 Absorption Spectrum. The Journal of Physical Chemistry, 1994, 98, 13144-13150.	2.9	132
124	Kinetic, thermochemical, and spectroscopic study of chlorine oxide (Cl2O3). The Journal of Physical Chemistry, 1993, 97, 7597-7605.	2.9	36
125	Identification of the nsσ and ndλ Rydberg states of O2 for n=3–5. Journal of Chemical Physics, 1992, 97, 6153-6167.	1.2	35
126	Identification of the nd Δ and Σ states and the 1,3Φâ†â†X 3Σâ^'g transition of O2 by resonant multiphoton ionization. Journal of Chemical Physics, 1992, 97, 6144-6152.	1.2	18