Maria Antonietta Casadei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6421928/publications.pdf

Version: 2024-02-01

43 papers

1,253 citations

331670 21 h-index 35 g-index

43 all docs

43 docs citations

43 times ranked

1879 citing authors

#	Article	IF	CITATIONS
1	Biodegradable and pH-Sensitive Hydrogels for Potential Colon-Specific Drug Delivery: Characterization and In Vitro Release Studies. Biomacromolecules, 2008, 9, 43-49.	5.4	84
2	Solid lipid nanoparticles incorporated in dextran hydrogels: A new drug delivery system for oral formulations. International Journal of Pharmaceutics, 2006, 325, 140-146.	5.2	83
3	Cyanomethyl Anion/Carbon Dioxide System:Â An Electrogenerated Carboxylating Reagent. Synthesis of Carbamates under Mild and Safe Conditions. Journal of Organic Chemistry, 2003, 68, 1548-1551.	3.2	76
4	Evaluation of processing effects on anthocyanin content and colour modifications of blueberry () Tj ETQq0 0 0 rg 114-123.	BT /Overlo 8.2	ck 10 Tf 50 6 73
5	In Situ Cross-Linkable Novel Alginate-Dextran Methacrylate IPN Hydrogels for Biomedical Applications: Mechanical Characterization and Drug Delivery Properties. Biomacromolecules, 2008, 9, 2014-2020.	5.4	67
6	Photocrosslinking of dextran and polyaspartamide derivatives: A combination suitable for colon-specific drug delivery. Journal of Controlled Release, 2007, 119, 328-338.	9.9	56
7	Injectable and photocross-linkable gels based on gellan gum methacrylate: A new tool for biomedical application. International Journal of Biological Macromolecules, 2015, 72, 1335-1342.	7.5	53
8	Suzuki-Miyaura cross-coupling of arenediazonium salts catalyzed by alginate/gellan-stabilized palladium nanoparticles under aerobic conditions in water. Green Chemistry, 2012, 14, 317-320.	9.0	52
9	Effect of glycerol on the physical and mechanical properties of thin gellan gum films for oral drug delivery. International Journal of Pharmaceutics, 2018, 547, 226-234.	5.2	49
10	Design of a tunable nanocomposite double network hydrogel based on gellan gum for drug delivery applications. European Polymer Journal, 2018, 104, 184-193.	5.4	47
11	Infant Milk Formulas: Effect of Storage Conditions on the Stability of Powdered Products towards Autoxidation. Foods, 2015, 4, 487-500.	4.3	41
12	Dextran-polyethylene glycol cryogels as spongy scaffolds for drug delivery. International Journal of Biological Macromolecules, 2021, 166, 1292-1300.	7.5	38
13	New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization. Carbohydrate Polymers, 2015, 126, 208-214.	10.2	35
14	SPC Liposomes as Possible Delivery Systems for Improving Bioavailability of the Natural Sesquiterpene \hat{l}^2 -Caryophyllene: Lamellarity and Drug-Loading as Key Features for a Rational Drug Delivery Design. Pharmaceutics, 2018, 10, 274.	4.5	32
15	Spermidine-Cross-linked Hydrogels as Novel Potential Platforms for Pharmaceutical Applications. Journal of Pharmaceutical Sciences, 2013, 102, 2632-2643.	3.3	30
16	Novel injectable and in situ cross-linkable hydrogels of dextran methacrylate and scleroglucan derivatives: Preparation and characterization. Carbohydrate Polymers, 2013, 92, 1033-1039.	10.2	29
17	Design and development of PEG-DMA gel-in-liposomes as a new tool for drug delivery. Reactive and Functional Polymers, 2014, 77, 30-38.	4.1	27
18	Gellan gum and polyethylene glycol dimethacrylate double network hydrogels with improved mechanical properties. Journal of Polymer Research, 2014, 21, 1.	2.4	25

#	Article	IF	CITATIONS
19	Protection and viability of fruit seeds oils by nanostructured lipid carrier (NLC) nanosuspensions. Journal of Colloid and Interface Science, 2016, 479, 25-33.	9.4	25
20	Investigating the Role of Polydopamine to Modulate Stem Cell Adhesion and Proliferation on Gellan Gum-Based Hydrogels. ACS Applied Bio Materials, 2020, 3, 945-951.	4.6	24
21	DESIGN AND CHARACTERIZATION OF A BIOCOMPATIBLE PHYSICAL HYDROGEL BASED ON SCLEROGLUCAN FOR TOPICAL DRUG DELIVERY. Carbohydrate Polymers, 2017, 174, 960-969.	10.2	23
22	Electrochemical studies on haloamides. Part XII. Electrosynthesis of oxazolidine-2,4-diones. Tetrahedron, 1995, 51, 5891-5900.	1.9	22
23	Reflectance colorimetry: a mirror for food quality—a mini review. European Food Research and Technology, 2020, 246, 259-272.	3.3	22
24	Facile stereoselective conversion of 1,2-diols into alkane-1,2-diyl carbonates. New Journal of Chemistry, 1999, 23, 433-436.	2.8	21
25	Can Pulsed Electromagnetic Fields Trigger On-Demand Drug Release from High-Tm Magnetoliposomes?. Nanomaterials, 2018, 8, 196.	4.1	21
26	Physical Carboxymethylscleroglucan/Calcium Ion Hydrogels as Modified Drug Delivery Systems in Topical Formulations. Molecules, 2009, 14, 2684-2698.	3.8	18
27	Influence of the formulation components on the properties of the system SLN-dextran hydrogel for the modified release of drugs. Journal of Microencapsulation, 2009, 26, 355-364.	2.8	18
28	Influence of fat extraction methods on the peroxide value in infant formulas. Food Research International, 2012, 48, 584-591.	6.2	18
29	Hydrogels of Dextran Containing Nonsteroidal Anti-Inflammatory Drugs as Pendant Agents. Drug Delivery, 2007, 14, 87-93.	5 . 7	16
30	Carboxymethyl derivative of scleroglucan: a novel thermosensitive hydrogel forming polysaccharide for drug delivery applications. Journal of Materials Science: Materials in Medicine, 2009, 20, 1081-1087.	3.6	16
31	pH-Sensitive hydrogels of dextran: Synthesis, characterization and <i>in vivo </i> studies. Journal of Drug Targeting, 2008, 16, 649-659.	4.4	15
32	Chemical Investigation and Screening of Anti-Proliferative Activity on Human Cell Lines of Pure and Nano-Formulated Lavandin Essential Oil. Pharmaceuticals, 2020, 13, 352.	3.8	15
33	Novel pH-Sensitive Physical Hydrogels of Carboxymethyl Scleroglucan. Journal of Pharmaceutical Sciences, 2012, 101, 256-267.	3.3	14
34	Solid Lipid Nanoparticles as Effective Reservoir Systems for Long-Term Preservation of Multidose Formulations. AAPS PharmSciTech, 2013, 14, 847-853.	3.3	13
35	Physical gels of a carboxymethyl derivative of scleroglucan: Synthesis and characterization. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67, 682-689.	4.3	11
36	Enhanced Loading Efficiency and Mucoadhesion Properties of Gellan Gum Thin Films by Complexation with Hydroxypropyl-Î ² -Cyclodextrin. Pharmaceutics, 2020, 12, 819.	4.5	10

#	Article	IF	CITATIONS
37	The Impact of Bilayer Rigidity on the Release from Magnetoliposomes Vesicles Controlled by PEMFs. Pharmaceutics, 2021, 13, 1712.	4.5	8
38	Application of NMR spectroscopy in the development of a biomimetic approach for hydrophobic drug association with physical hydrogels. Colloids and Surfaces B: Biointerfaces, 2014, 115, 391-399.	5.0	7
39	Valorization of Kiwi Peels: Fractionation, Bioactives Analyses and Hypotheses on Complete Peels Recycle. Foods, 2022, 11, 589.	4.3	7
40	NMR Characterization of Carboxymethyl Scleroglucan. International Journal of Polymer Analysis and Characterization, 2013, 18, 587-595.	1.9	5
41	Dextran-based hydrogel microspheres obtained in w/o emulsion: preparation, characterisation and <i>in vivo </i> studies. Journal of Microencapsulation, 2014, 31, 440-447.	2.8	4
42	Injectable and In Situ Gelling Dextran Derivatives Containing Hydrolyzable Groups for the Delivery of Large Molecules. Gels, 2021, 7, 150.	4.5	2
43	Solvent Casting and UV Photocuring for Easy and Safe Fabrication of Nanocomposite Film Dressings. Molecules, 2022, 27, 2959.	3.8	1