Anders Malmendal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6421747/publications.pdf

Version: 2024-02-01

77 papers 3,666 citations

147566 31 h-index 59 g-index

81 all docs

81 docs citations

81 times ranked 4727 citing authors

#	Article	IF	CITATIONS
1	Correlation between stage of prostate cancer and tyrosine and tryptophan in urine samples measured electrochemically. Analytical Biochemistry, 2022, 649, 114698.	1.1	5
2	Molecular Networks and Macromolecular Molar Mass Distributions for Preliminary Characterization of Danish Craft Beers. Beverages, 2022, 8, 35.	1.3	0
3	Prediction of complex phenotypes using the Drosophila melanogaster metabolome. Heredity, 2021, 126, 717-732.	1.2	4
4	Charge Regulation during Amyloid Formation of \hat{l}_{\pm} -Synuclein. Journal of the American Chemical Society, 2021, 143, 7777-7791.	6.6	33
5	Adsorption of bio-organic eco-corona molecules reduces the toxic response to metallic nanoparticles in Daphnia magna. Scientific Reports, 2021, 11, 10784.	1.6	20
6	Sensory Assessment of Fish and Chicken Protein Hydrolysates. Evaluation of NMR Metabolomics Profiling as a New Prediction Tool. Journal of Agricultural and Food Chemistry, 2020, 68, 3881-3890.	2.4	17
7	Ultrastructural evidence for self-replication of Alzheimer-associated \hat{A}^2 42 amyloid along the sides of fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11265-11273.	3.3	37
8	Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta. PLoS ONE, 2020, 15, e0237201.	1,1	9
9	Revealing Well-Defined Soluble States during Amyloid Fibril Formation by Multilinear Analysis of NMR Diffusion Data. Journal of the American Chemical Society, 2019, 141, 18649-18652.	6.6	6
10	In-hospital metabolite changes in infective endocarditisâ€"a longitudinal 1H NMR-based study. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1553-1560.	1.3	3
11	A method of predicting the in vitro fibril formation propensity of $A\hat{l}^2$ 40 mutants based on their inclusion body levels in E. coli. Scientific Reports, 2019, 9, 3680.	1.6	6
12	pKa Determination of a Histidine Residue in a Short Peptide Using Raman Spectroscopy. Molecules, 2019, 24, 405.	1.7	27
13	Metabolic and functional phenotypic profiling of Drosophila melanogaster reveals reduced sex differentiation under stressful environmental conditions. Biological Journal of the Linnean Society, 2018, 123, 155-162.	0.7	9
14	Metabolic control of PPAR activity by aldehyde dehydrogenase regulates invasive cell behavior and predicts survival in hepatocellular and renal clear cell carcinoma. BMC Cancer, 2018, 18, 1180.	1,1	22
15	Metabolic and functional characterization of effects of developmental temperature in <i>Drosophila melanogaster</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R211-R222.	0.9	46
16	Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 2017, 7, 11452.	1.6	491
17	Amyloid \hat{I}^2 42 peptide is toxic to non-neural cells in < i > Drosophila < /i > yielding a characteristic metabolite profile and the effect can be suppressed by PI3K. Biology Open, 2017, 6, 1664-1671.	0.6	5
18	Mild heat treatments induce long-term changes in metabolites associated with energy metabolism in Drosophila melanogaster. Biogerontology, 2016, 17, 873-882.	2.0	13

#	Article	IF	CITATIONS
19	Hemolymph metabolites and osmolality are tightly linked to cold tolerance of <i>Drosophila</i> species: a comparative study. Journal of Experimental Biology, 2016, 219, 2504-13.	0.8	34
20	Metabolic changes may precede proteostatic dysfunction inÂa Drosophila model of amyloid beta peptide toxicity. Neurobiology of Aging, 2016, 41, 39-52.	1.5	14
21	Drosophila neprilysins control insulin signaling and food intake via cleavage of regulatory peptides. ELife, 2016, 5, .	2.8	23
22	Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles. Environmental Science & Environment	4.6	421
23	Effect of Nanoparticles in Top Consumers. Biophysical Journal, 2014, 106, 625a.	0.2	1
24	Use of NMR in profiling of cocaine seizures. Forensic Science International, 2013, 231, 120-124.	1.3	26
25	Metabolomic analysis of the selection response of Drosophila melanogaster to environmental stress: are there links to gene expression and phenotypic traits?. Die Naturwissenschaften, 2013, 100, 417-427.	0.6	27
26	Mutation in transforming growth factor beta induced protein associated with granular corneal dystrophy type 1 reduces the proteolytic susceptibility through local structural stabilization. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2013, 1834, 2812-2822.	1.1	33
27	Application of "magnetic tongue―to the sensory evaluation of extra virgin olive oil. Food Chemistry, 2013, 140, 692-699.	4.2	30
28	Liver-specific $<$ i>Aquaporin $11i>knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding. American Journal of Physiology - Renal Physiology, 2013, 304, G501-G515.$	1.6	36
29	Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques: TFE-induced unfolding of KcsA in DDM surfactant. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2290-2301.	1.4	20
30	Cold tolerance and freeze-induced glucose accumulation in three terrestrial slugs. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 161, 443-449.	0.8	17
31	The Metabolic Profile of Long-Lived Drosophila melanogaster. PLoS ONE, 2012, 7, e47461.	1.1	37
32	NMR Spectrometers as "Magnetic Tongues― Prediction of Sensory Descriptors in Canned Tomatoes. Journal of Agricultural and Food Chemistry, 2011, 59, 10831-10838.	2.4	35
33	SDS-Facilitated In vitro Formation of a Transmembrane B-Type Cytochrome Is Mediated by Changes in Local pH. Journal of Molecular Biology, 2011, 407, 594-606.	2.0	17
34	The Binding Mechanism of a Peptidic Cyclic Serine Protease Inhibitor. Journal of Molecular Biology, 2011, 412, 235-250.	2.0	16
35	A GC–MS-based metabonomic investigation of blood serum from irritable bowel syndrome patients undergoing intervention with acidified milk products. European Food Research and Technology, 2011, 233, 1013-1021.	1.6	18
36	Hsp70 expression and metabolite composition in response to short-term thermal changes in Folsomia candida (Collembola). Comparative Biochemistry and Physiology Part A, Molecular & Egrative Physiology, 2010, 157, 177-183.	0.8	25

#	Article	IF	Citations
37	Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics. Journal of the International Society of Sports Nutrition, 2010, 7, 9.	1.7	45
38	The Serum Metabolite Response to Diet Intervention with Probiotic Acidified Milk in Irritable Bowel Syndrome Patients Is Indistinguishable from that of Non-Probiotic Acidified Milk by 1H NMR-Based Metabonomic Analysis. Nutrients, 2010, 2, 1141-1155.	1.7	16
39	Metabolic Changes during Estivation in the Common Earthworm <i>Aporrectodea caliginosa</i> Physiological and Biochemical Zoology, 2010, 83, 541-550.	0.6	27
40	NMR Reveals Two-Step Association of Congo Red to Amyloid \hat{l}^2 in Low-Molecular-Weight Aggregates. Journal of Physical Chemistry B, 2010, 114, 16003-16010.	1.2	27
41	Fast Mapping of Global Protein Folding States by Multivariate NMR: A GPS for Proteins. PLoS ONE, 2010, 5, e10262.	1.1	18
42	NMRâ€based metabonomics reveals that plasma betaine increases upon intake of highâ€fiber rye buns in hypercholesterolemic pigs. Molecular Nutrition and Food Research, 2009, 53, 1055-1062.	1.5	32
43	Metabolic characterization of rumen epithelial tissue from dairy calves fed different starter diets using 1H NMR spectroscopy. Livestock Science, 2009, 120, 127-134.	0.6	10
44	Characterization of dry globular proteins and protein fibrils by synchrotron radiation vacuum UV circular dichroism. Biopolymers, 2008, 89, 779-795.	1.2	15
45	Early Stages of Amyloid Fibril Formation Studied by Liquid-State NMR: The Peptide Hormone Glucagon. Biophysical Journal, 2008, 95, 366-377.	0.2	33
46	Freeze tolerance and accumulation of cryoprotectants in the enchytraeid Enchytraeus albidus (Oligochaeta) from Greenland and Europe. Cryobiology, 2008, 57, 286-291.	0.3	38
47	Quantitative Analysis of Constituents in Heavy Fuel Oil by ¹ H Nuclear Magnetic Resonance (NMR) Spectroscopy and Multivariate Data Analysis. Energy & Fuels, 2008, 22, 4070-4076.	2.5	36
48	Metabolomic Signatures of Inbreeding at Benign and Stressful Temperatures in <i>Drosophila melanogaster</i> . Genetics, 2008, 180, 1233-1243.	1.2	71
49	Slow desiccation improves dehydration tolerance and accumulation of compatible osmolytes in earthworm cocoons (<i>Dendrobaena octaedra</i> Savigny). Journal of Experimental Biology, 2008, 211, 1903-1910.	0.8	26
50	In vitro and in vivo studies of creatine monohydrate supplementation to Duroc and Landrace pigs. Meat Science, 2007, 76, 342-351.	2.7	40
51	Effect of Magnetic Field Strength on NMR-Based Metabonomic Human Urine Data. Comparative Study of 250, 400, 500, and 800 MHz. Analytical Chemistry, 2007, 79, 7110-7115.	3.2	45
52	Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster. Journal of Insect Physiology, 2007, 53, 1218-1232.	0.9	232
53	NMR studies of the fifth transmembrane segment of Na+ ,K+ -ATPase reveals a non-helical ion-binding region. FEBS Letters, 2006, 580, 4777-4783.	1.3	3
54	Cation Binding in Na,K-ATPase, Investigated by 205Tl Solid-State NMR Spectroscopy. Biochemistry, 2006, 45, 10768-10776.	1.2	4

#	Article	IF	CITATIONS
55	Inhibition of plasminogen activator inhibitor-1 binding to endocytosis receptors of the low-density-lipoprotein receptor family by a peptide isolated from a phage display library. Biochemical Journal, 2006, 399, 387-396.	1.7	16
56	NMR-based metabonomic studies reveal changes in the biochemical profile of plasma and urine from pigs fed high-fibre rye bread. British Journal of Nutrition, 2006, 95, 955-962.	1.2	62
57	Metabolomic profiling of heat stress: hardening and recovery of homeostasis in Drosophila. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R205-R212.	0.9	170
58	A metabolomic investigation of splanchnic metabolism using 1H NMR spectroscopy of bovine blood plasma. Analytica Chimica Acta, 2005, 536, 1-6.	2.6	19
59	Calcium-Modulated S100 Proteinâ^'Phospholipid Interactions. An NMR Study of Calbindin D9kand DPCâ€. Biochemistry, 2005, 44, 6502-6512.	1.2	12
60	Evidence for Differing Roles for Each Lobe of the Calmodulin-like Domain in a Calcium-dependent Protein Kinase. Journal of Biological Chemistry, 2004, 279, 29092-29100.	1.6	62
61	Techniques and applications of NMR to membrane proteins (Review). Molecular Membrane Biology, 2004, 21, 129-141.	2.0	37
62	An NMR-based metabolomic approach to assess metabolism in splanchnic tissues of steers. Journal of Animal and Feed Sciences, 2004, 13, 295-298.	0.4	3
63	NMR studies of the fifth transmembrane segment of sarcoplasmic reticulum Ca2+ -ATPase reveals a hinge close to the Ca2+ -ligating residues. FEBS Letters, 2003, 544, 50-56.	1.3	9
64	Nascent structure in the kinase anchoring domain of microtubule-associated protein 2. Biochemical and Biophysical Research Communications, 2003, 301, 136-142.	1.0	6
65	The Flexibility of SIMPSON and SIMMOL for Numerical Simulations in Solid-and Liquid-State NMR Spectroscopy. Monatshefte Fýr Chemie, 2002, 133, 1555-1574.	0.9	66
66	Dynamics of the Transition between Open and Closed Conformations in a Calmodulin C-Terminal Domain Mutant. Structure, 2001, 9, 185-195.	1.6	88
67	Battle for the EF-Hands:  Magnesiumâ^Calcium Interference in Calmodulin. Biochemistry, 1999, 38, 11844-11850.	1.2	85
68	Backbone dynamics and energetics of a Calmodulin domain mutant exchanging between closed and open conformations. Journal of Molecular Biology, 1999, 289, 603-617.	2.0	122
69	Structural dynamics in the C-terminal domain of calmodulin at low calcium levels 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 293, 883-899.	2.0	148
70	Calcium. Current Opinion in Chemical Biology, 1998, 2, 293-302.	2.8	59
71	Ca2+ Binding and Conformational Changes in a Calmodulin Domain. Biochemistry, 1998, 37, 13744-13754.	1.2	67
72	Sequence and Context Dependence of EF-Hand Loop Dynamics. An15N Relaxation Study of a Calcium-Binding Site Mutant of Calbindin D9kâ€. Biochemistry, 1998, 37, 2586-2595.	1.2	41

#	ARTICLE	IF	CITATION
73	When Size Is Important. Journal of Biological Chemistry, 1998, 273, 28994-29001.	1.6	54
74	NMR Studies of the E140Q Mutant of the Carboxy-Terminal Domain of Calmodulin Reveal Global Conformational Exchange in the Ca2+-Saturated Stateâ€. Biochemistry, 1997, 36, 3448-3457.	1.2	72
75	Solution Structure of the Paramagnetic Complex of the N-Terminal Domain of Calmodulin with Two Ce3+Ions by1H NMRâ€,‡. Biochemistry, 1997, 36, 11605-11618.	1.2	93
76	Structural basis for the negative allostery between Ca ²⁺ â€and Mg ²⁺ â€binding in the intracellular Ca ²⁺ â€receptor calbindin D _{9k} . Protein Science, 1997, 6, 1139-1147.	3.1	65
77	Can we adjust a marine cyclopoid copepod to freshwater?—First step towards a â€~universal' live feed product for fish and shrimp larvae. Aquaculture Research, 0, , .	0.9	4