Yang Lu

List of Publications by Citations

Source: https://exaly.com/author-pdf/6421210/yang-lu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

9,563 90 217 53 h-index g-index citations papers 6.36 11,265 8.3 229 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
217	Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. <i>Journal of the American Chemical Society</i> , 2014 , 136, 564	7 ¹ 6 5	378
216	Cold welding of ultrathin gold nanowires. <i>Nature Nanotechnology</i> , 2010 , 5, 218-24	28.7	370
215	Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. <i>Small</i> , 2010 , 6, 169-73	11	323
214	Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4593		280
213	Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. <i>Nature Communications</i> , 2016 , 7, 12920	17.4	245
212	Mechanical Metamaterials and Their Engineering Applications. <i>Advanced Engineering Materials</i> , 2019 , 21, 1800864	3.5	234
211	Photothermally Sensitive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light-Controlled Liquid Microvalves. <i>Advanced Functional Materials</i> , 2012 , 22, 4017-4022	15.6	230
210	Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water. <i>Langmuir</i> , 2011 , 27, 8998-9004	4	229
209	Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. <i>Nano Research</i> , 2010 , 3, 244-255	10	223
208	Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface. <i>ACS Nano</i> , 2010 , 4, 6228-34	16.7	216
207	Filtration Shell Mediated Power Density Independent Orthogonal Excitations-Emissions Upconversion Luminescence. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2464-9	16.4	186
206	Macroscopic free-standing hierarchical 3D architectures assembled from silver nanowires by ice templating. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4561-6	16.4	158
205	High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11606-7	16.4	152
204	Ultralarge elastic deformation of nanoscale diamond. <i>Science</i> , 2018 , 360, 300-302	33.3	151
203	Mesoporous CuCo2O4 nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9769-9776	13	149
202	Templating synthesis of preloaded Doxorubicin in hollow mesoporous silica nanospheres for biomedical applications. <i>Advanced Materials</i> , 2010 , 22, 5255-9	24	143
201	Hydrophilic Co@Au yolk/shell nanospheres: synthesis, assembly, and application to gene delivery. <i>Advanced Materials</i> , 2010 , 22, 1407-11	24	137

(2015-2008)

200	Biocompatible, Luminescent Silver@Phenol Formaldehyde Resin Core/Shell Nanospheres: Large-Scale Synthesis and Application for In Vivo Bioimaging. <i>Advanced Functional Materials</i> , 2008 , 18, 872-879	15.6	136
199	Flexible Fiber-Shaped Supercapacitor Based on Nickel-Cobalt Double Hydroxide and Pen Ink Electrodes on Metallized Carbon Fiber. <i>ACS Applied Materials & Double Hydroxide and Pen Ink Electrodes on Metallized Carbon Fiber</i> .	9.5	120
198	Phenol formaldehyde resin nanoparticles loaded with CdTe quantum dots: a fluorescence resonance energy transfer probe for optical visual detection of copper(II) ions. ACS Nano, 2011, 5, 2147	- 5 4·7	119
197	Iron oxide nanoclusters for T magnetic resonance imaging of non-human primates. <i>Nature Biomedical Engineering</i> , 2017 , 1, 637-643	19	117
196	Approaching the ideal elastic strain limit in silicon nanowires. <i>Science Advances</i> , 2016 , 2, e1501382	14.3	116
195	Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms. <i>Acta Biomaterialia</i> , 2015 , 16, 178-86	10.8	115
194	Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance. <i>RSC Advances</i> , 2013 , 3, 5851	3.7	114
193	Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. <i>Nature Communications</i> , 2020 , 11, 4066	17.4	105
192	Fracture of Sub-20nm Ultrathin Gold Nanowires. <i>Advanced Functional Materials</i> , 2011 , 21, 3982-3989	15.6	93
191	Controllable Tuning of Cobalt Nickel-Layered Double Hydroxide Arrays as Multifunctional Electrodes for Flexible Supercapattery Device and Oxygen Evolution Reaction. <i>ACS Nano</i> , 2019 , 13, 122	0 16 722	218°
190	Elastic straining of free-standing monolayer graphene. <i>Nature Communications</i> , 2020 , 11, 284	17.4	89
189	Highly Stimuli-Responsive Au Nanorods/Poly(N-isopropylacrylamide) (PNIPAM) Composite Hydrogel for Smart Switch. <i>ACS Applied Materials & mp; Interfaces</i> , 2017 , 9, 24857-24863	9.5	87
188	Rare earth oxide nanocrystals induce autophagy in HeLa cells. Small, 2009, 5, 2784-7	11	87
187	Hierarchical Core/Shell NiCo2O4@NiCo2O4 Nanocactus Arrays with Dual-functionalities for High Performance Supercapacitors and Li-ion Batteries. <i>Scientific Reports</i> , 2015 , 5, 12099	4.9	84
186	C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. <i>Nanotechnology</i> , 2010 , 21, 495101	3.4	83
185	Crack propagation in bamboo's hierarchical cellular structure. Scientific Reports, 2014, 4, 5598	4.9	81
184	Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. <i>Nanoscale Research Letters</i> , 2014 , 9, 424	5	81
183	Facile synthesis of graphene-like copper oxide nanofilms with enhanced electrochemical and photocatalytic properties in energy and environmental applications. <i>ACS Applied Materials & Interfaces</i> , 2015 , 7, 9682-90	9.5	79

182	Thermoresponsive Forming Hydrogel with Sol-Gel Irreversibility for Effective Methicillin-Resistant Infected Wound Healing. <i>ACS Nano</i> , 2019 , 13, 10074-10084	16.7	78
181	Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. <i>Thin Solid Films</i> , 2017 , 638, 383-388	2.2	78
180	Interface toughness of carbon nanotube reinforced epoxy composites. <i>ACS Applied Materials & amp; Interfaces</i> , 2011 , 3, 129-34	9.5	78
179	On-Nanowire Axial Heterojunction Design for High-Performance Photodetectors. <i>ACS Nano</i> , 2016 , 10, 8474-81	16.7	73
178	Synthesis of superparamagnetic CaCO3 mesocrystals for multistage delivery in cancer therapy. <i>Small</i> , 2010 , 6, 2436-42	11	71
177	Ultrathin ZnS nanosheet/carbon nanotube hybrid electrode for high-performance flexible all-solid-state supercapacitor. <i>Nano Research</i> , 2017 , 10, 2570-2583	10	69
176	Seed-assisted smart construction of high mass loading NitoMn hydroxide nanoflakes for supercapacitor applications. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16776-16785	13	69
175	Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires. <i>Nano Research</i> , 2011 , 4, 1261-1267	10	67
174	In Situ Formation of Copper-Based Hosts Embedded within 3D N-Doped Hierarchically Porous Carbon Networks for Ultralong Cycle LithiumBulfur Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1804520	15.6	66
173	MnO Nanocrystals: A Platform for Integration of MRI and Genuine Autophagy Induction for Chemotherapy. <i>Advanced Functional Materials</i> , 2013 , 23, 1534-1546	15.6	66
172	Photothermal poly(N-isopropylacrylamide)/Fe3O4 nanocomposite hydrogel as a movable position heating source under remote control. <i>Small</i> , 2014 , 10, 2796-800, 2741	11	62
171	Hierarchical, porous CuS microspheres integrated with carbon nanotubes for high-performance supercapacitors. <i>Scientific Reports</i> , 2015 , 5, 16584	4.9	62
170	Graphene-Bridged Multifunctional Flexible Fiber Supercapacitor with High Energy Density. <i>ACS Applied Materials & Density Interfaces</i> , 2018 , 10, 28597-28607	9.5	59
169	Controlled Synthesis and Biocompatibility of Water-Soluble ZnO Nanorods/Au Nanocomposites with Tunable UV and Visible Emission Intensity. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 19872-19877	, 3.8	58
168	Transforming ground mica into high-performance biomimetic polymeric mica film. <i>Nature Communications</i> , 2018 , 9, 2974	17.4	57
167	Quantitative in situ TEM tensile testing of an individual nickel nanowire. <i>Nanotechnology</i> , 2011 , 22, 355	79.2	57
166	Effect of nitrogen doping on the mechanical properties of carbon nanotubes. ACS Nano, 2010, 4, 7637-	43 6.7	54
165	Development and Application of a Novel Microfabricated Device for the In Situ Tensile Testing of 1-D Nanomaterials. <i>Journal of Microelectromechanical Systems</i> , 2010 , 19, 675-682	2.5	54

(2016-2016)

164	NiCo2S4/carbon nanotube nanocomposites with a chain-like architecture for enhanced supercapacitor performance. <i>CrystEngComm</i> , 2016 , 18, 7696-7706	3.3	48	
163	Synthesis of Fe3O4@phenol formaldehyde resin core-shell nanospheres loaded with Au nanoparticles as magnetic FRET nanoprobes for detection of thiols in living cells. <i>Chemistry - A European Journal</i> , 2012 , 18, 1154-60	4.8	48	
162	A shape-memory scaffold for macroscale assembly of functional nanoscale building blocks. <i>Materials Horizons</i> , 2014 , 1, 69-73	14.4	47	
161	Magnetic Alloy Nanorings Loaded with Gold Nanoparticles: Synthesis and Applications as Multimodal Imaging Contrast Agents. <i>Advanced Functional Materials</i> , 2010 , 20, 3701-3706	15.6	47	
160	Ag Nanoparticles Cluster with pH-Triggered Reassembly in Targeting Antimicrobial Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 2000511	15.6	46	
159	Biogenic and biomimetic magnetic nanosized assemblies. <i>Nano Today</i> , 2012 , 7, 297-315	17.9	46	
158	Hierarchical porous CuO nanostructures with tunable properties for high performance supercapacitors. <i>RSC Advances</i> , 2015 , 5, 10773-10781	3.7	45	
157	Ferrimagnetic Nanochains-Based Mesenchymal Stem Cell Engineering for Highly Efficient Post-Stroke Recovery. <i>Advanced Functional Materials</i> , 2019 , 29, 1900603	15.6	43	
156	PEGylated upconverting luminescent hollow nanospheres for drug delivery and in vivo imaging. <i>Small</i> , 2013 , 9, 3235-41	11	43	
155	Fully Controllable Design and Fabrication of Three-Dimensional Lattice Supercapacitors. <i>ACS Applied Materials & Discourse Materials</i>	9.5	43	
154	Charge reversal induced colloidal hydrogel acts as a multi-stimuli responsive drug delivery platform for synergistic cancer therapy. <i>Materials Horizons</i> , 2019 , 6, 711-716	14.4	41	
153	Quantitative in-situ nanomechanical characterization of metallic nanowires. <i>Jom</i> , 2011 , 63, 35-42	2.1	41	
152	High-Entropy Alloy (HEA)-Coated Nanolattice Structures and Their Mechanical Properties. <i>Advanced Engineering Materials</i> , 2018 , 20, 1700625	3.5	40	
151	Ambient Aqueous Synthesis of Ultrasmall NiSe Nanoparticles for Noninvasive Photoacoustic Imaging and Combined Photothermal-Chemotherapy of Cancer. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 41782-41793	9.5	40	
150	Tuning Magnetic Property and Autophagic Response for Self-Assembled Nito Alloy Nanocrystals. <i>Advanced Functional Materials</i> , 2013 , 23, 5930-5940	15.6	40	
149	Degradation-Restructuring Induced Anisotropic Epitaxial Growth for Fabrication of Asymmetric Diblock and Triblock Mesoporous Nanocomposites. <i>Advanced Materials</i> , 2017 , 29, 1701652	24	39	
148	High performance low-dimensional perovskite solar cells based on a one dimensional lead iodide perovskite. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8811-8817	13	38	
147	In situmechanical characterization of CoCrCuFeNi high-entropy alloy micro/nano-pillars for their size-dependent mechanical behavior. <i>Materials Research Express</i> , 2016 , 3, 094002	1.7	38	

146	Controlled synthesis of upconverting nanoparticles/CuS yolk-shell nanoparticles for in vitro synergistic photothermal and photodynamic therapy of cancer cells. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 9487-9496	7.3	37
145	Monodisperse mesocrystals of YF3 and Ce3+/Ln3+ (Ln=Tb, Eu) co-activated YF3: shape control synthesis, luminescent properties, and biocompatibility. <i>Chemistry - A European Journal</i> , 2012 , 18, 5222	-34 ⁸	37
144	Sequential Growth of NaYF:Yb/Er@NaGdF Nanodumbbells for Dual-Modality Fluorescence and Magnetic Resonance Imaging. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 9226-9232	9.5	36
143	Fatigue characterization of structural bamboo materials under flexural bending. <i>International Journal of Fatigue</i> , 2017 , 100, 126-135	5	36
142	Synthesis of multifunctional Ag@Au@phenol formaldehyde resin particles loaded with folic acids for photothermal therapy. <i>Chemistry - A European Journal</i> , 2012 , 18, 9294-9	4.8	36
141	Hierarchical 3D Co3O4@MnO2 core/shell nanoconch arrays on Ni foam for enhanced electrochemical performance. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 391-401	2.6	35
140	Microstructure, Mechanical and Corrosion Behaviors of CoCrFeNiAl0.3 High Entropy Alloy (HEA) Films. <i>Coatings</i> , 2017 , 7, 156	2.9	34
139	Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications. <i>Scientific Reports</i> , 2013 , 3, 2994	4.9	33
138	Filtration Shell Mediated Power Density Independent Orthogonal Excitations Emissions Upconversion Luminescence. <i>Angewandte Chemie</i> , 2016 , 128, 2510-2515	3.6	33
137	Viscoelastic damping behavior of structural bamboo material and its microstructural origins. <i>Mechanics of Materials</i> , 2016 , 97, 184-198	3.3	32
136	In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires. <i>Nano Research</i> , 2018 , 11, 625-632	10	32
135	Anti-biofouling double-layered unidirectional scaffold for long-term solar-driven water evaporation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 16696-16703	13	31
134	PEGylated rhenium nanoclusters: a degradable metal photothermal nanoagent for cancer therapy. <i>Chemical Science</i> , 2019 , 10, 5435-5443	9.4	31
133	NiO-bridged MnCo-hydroxides for flexible high-performance fiber-shaped energy storage device. <i>Applied Surface Science</i> , 2019 , 475, 1058-1064	6.7	31
132	Microstructure Evolution and Mechanical Properties of a SMATed Mg Alloy under In Situ SEM Tensile Testing. <i>Journal of Materials Science and Technology</i> , 2017 , 33, 224-230	9.1	30
131	Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. <i>Biomaterials</i> , 2020 , 259, 120299	15.6	30
130	Cost-effective CuO nanotube electrodes for energy storage and non-enzymatic glucose detection. <i>RSC Advances</i> , 2014 , 4, 46814-46822	3.7	29
129	Topology optimization-guided lattice composites and their mechanical characterizations. <i>Composites Part B: Engineering</i> , 2019 , 160, 402-411	10	29

(2018-2020)

128	Anti-inflammatory catecholic chitosan hydrogel for rapid surgical trauma healing and subsequent prevention of tumor recurrence. <i>Chinese Chemical Letters</i> , 2020 , 31, 1807-1811	8.1	29	
127	In situ nanomechanical characterization of multi-layer MoS membranes: from intraplanar to interplanar fracture. <i>Nanoscale</i> , 2017 , 9, 9119-9128	7.7	28	
126	Synthesis of an Oxidation-Sensitive Polyphosphoester Bearing Thioether Group for Triggered Drug Release. <i>Biomacromolecules</i> , 2019 , 20, 1740-1747	6.9	28	
125	Stable gadolinium based nanoscale lyophilized injection for enhanced MR angiography with efficient renal clearance. <i>Biomaterials</i> , 2018 , 158, 74-85	15.6	28	
124	Synthesis of Mesoporous Calcium Phosphate Microspheres by Chemical Transformation Process: Their Stability and Encapsulation of Carboxymethyl Chitosan. <i>Crystal Growth and Design</i> , 2013 , 13, 3201	-3207	27	
123	Facile Surfactant-Free Synthesis of Water-Dispersible Willow-Leaf-Like Carbonate Apatite Nanorods in Ethanol/Water Mixed Solution and Their Cytotoxicity. <i>Crystal Growth and Design</i> , 2008 , 8, 3822-3828	3.5	27	
122	An atomistic study on the mechanical behavior of bamboo cell wall constituents. <i>Composites Part B: Engineering</i> , 2018 , 151, 222-231	10	27	
121	High strength and high ductility copper obtained by topologically controlled planar heterogeneous structures. <i>Scripta Materialia</i> , 2016 , 124, 103-107	5.6	26	
120	Rationally designed nickel oxide ravines@iron cobalt-hydroxides with largely enhanced capacitive performance for asymmetric supercapacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16944-16952	13	26	
119	Sequential growth of CaF:Yb,Er@CaF:Gd nanoparticles for efficient magnetic resonance angiography and tumor diagnosis. <i>Biomaterials Science</i> , 2017 , 5, 2403-2415	7.4	25	
118	Enzyme-Responsive Ag Nanoparticle Assemblies in Targeting Antibacterial against Methicillin-Resistant. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 4333-4342	9.5	25	
117	Regioselective magnetization in semiconducting nanorods. <i>Nature Nanotechnology</i> , 2020 , 15, 192-197	28.7	25	
116	Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. <i>Biomaterials Science</i> , 2019 , 7, 867-875	7.4	23	
115	Ferrimagnetic mPEGPHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemotherapy. <i>National Science Review</i> , 2020 , 7, 723-736	10.8	23	
114	Mechanical Enhancement of Core-Shell Microlattices through High-Entropy Alloy Coating. <i>Scientific Reports</i> , 2018 , 8, 5442	4.9	23	
113	Metal-coated hybrid meso-lattice composites and their mechanical characterizations. <i>Composite Structures</i> , 2018 , 203, 750-763	5.3	23	
112	Macroscopic Free-Standing Hierarchical 3D Architectures Assembled from Silver Nanowires by Ice Templating. <i>Angewandte Chemie</i> , 2014 , 126, 4649-4654	3.6	23	
111	Mechanically stable ternary heterogeneous electrodes for energy storage and conversion. Nanoscale, 2018, 10, 2613-2622	7.7	22	

110	Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury. <i>Nanoscale</i> , 2016 , 8, 1684-90	7.7	22
109	Ultrafast response of spray-on nanocomposite piezoresistive sensors to broadband ultrasound. <i>Carbon</i> , 2019 , 143, 743-751	10.4	22
108	Strong and stiff Ag nanowire-chitosan composite films reinforced by AgB covalent bonds. <i>Nano Research</i> , 2018 , 11, 410-419	10	22
107	Rational Design of 3D Honeycomb-Like SnS Quantum Dots/rGO Composites as High-Performance Anode Materials for Lithium/Sodium-Ion Batteries. <i>Nanoscale Research Letters</i> , 2018 , 13, 389	5	22
106	Fluorine and Nitrogen Co-Doped Carbon Dot Complexation with Fe(III) as a T Contrast Agent for Magnetic Resonance Imaging. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 18203-18212	9.5	21
105	Self-assembly of hierarchical 3D starfish-like Co3O4 nanowire bundles on nickel foam for high-performance supercapacitor. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 1	2.3	21
104	Tungsten Nitride/Carbon Cloth as Bifunctional Electrode for Effective Polysulfide Recycling. <i>ACS Applied Energy Materials</i> , 2019 , 2, 3314-3322	6.1	20
103	Copper sulfide nanoneedles on CNT backbone composite electrodes for high-performance supercapacitors and Li-S batteries. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 349-359	2.6	20
102	Nacre-mimic Reinforced Ag@reduced Graphene Oxide-Sodium Alginate Composite Film for Wound Healing. <i>Scientific Reports</i> , 2017 , 7, 13851	4.9	17
101	Nanomechanics of low-dimensional materials for functional applications. <i>Nanoscale Horizons</i> , 2019 , 4, 781-788	10.8	17
100	Growth and electrochemical performance of porous NiMn2O4 nanosheets with high specific surface areas. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 3169-3175	2.6	17
99	High electrical conductivity of graphene-based transparent conductive films with silver nanocomposites. <i>RSC Advances</i> , 2015 , 5, 108044-108049	3.7	17
98	The Drosophila transcription factor ultrabithorax self-assembles into protein-based biomaterials with multiple morphologies. <i>Biomacromolecules</i> , 2009 , 10, 829-37	6.9	17
97	Enantioselective Synthesis of Axially Chiral Biaryls by Diels-Alder/Retro-Diels-Alder Reaction of 2-Pyrones with Alkynes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 8993-9001	16.4	17
96	High Strength and Deformation Mechanisms of AlCoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering. <i>Entropy</i> , 2019 , 21,	2.8	16
95	Direct quantification of mechanical responses of TiSiN/Ag multilayer coatings through uniaxial compression of micropillars. <i>Vacuum</i> , 2018 , 156, 310-316	3.7	16
94	Synthesis of tunable theranostic Fe3O4 @mesoporous silica nanospheres for biomedical applications. <i>Advanced Healthcare Materials</i> , 2012 , 1, 327-31	10.1	16
93	Rational design of double-confined Mn2O3/S@Al2O3 nanocube cathodes for lithium-sulfur batteries. <i>Journal of Solid State Electrochemistry</i> , 2018 , 22, 849-858	2.6	16

(2021-2019)

92	Cellular Carbon-Film-Based Flexible Sensor and Waterproof Supercapacitors. <i>ACS Applied Materials & Camp; Interfaces</i> , 2019 , 11, 26288-26297	9.5	15
91	MnFeO nanoparticles accelerate the clearance of mutant huntingtin selectively through ubiquitin-proteasome system. <i>Biomaterials</i> , 2019 , 216, 119248	15.6	15
90	Calcium carbonate-doxorubicin@silica-indocyanine green nanospheres with photo-triggered drug delivery enhance cell killing in drug-resistant breast cancer cells. <i>Nano Research</i> , 2018 , 11, 3385-3395	10	15
89	Size dictates mechanical properties for protein fibers self-assembled by the Drosophila hox transcription factor ultrabithorax. <i>Biomacromolecules</i> , 2010 , 11, 3644-51	6.9	15
88	Solvothermal synthesis and mechanical characterization of single crystalline copper nanorings. Journal of Crystal Growth, 2011 , 325, 76-80	1.6	15
87	Mechanically Assisted Self-Healing of Ultrathin Gold Nanowires. <i>Small</i> , 2018 , 14, e1704085	11	14
86	Electrospun porous MnMoO4 nanotubes as high-performance electrodes for asymmetric supercapacitors. <i>Journal of Solid State Electrochemistry</i> , 2018 , 22, 657-666	2.6	14
85	Hierarchical multi-villous nickeldobalt oxide nanocyclobenzene arrays: morphology control and electrochemical supercapacitive behaviors. <i>CrystEngComm</i> , 2014 , 16, 9735-9742	3.3	13
84	Facile synthesis of ENaGdF4:Yb/Er@CaF2 nanoparticles with enhanced upconversion fluorescence and stability via a sequential growth process. <i>CrystEngComm</i> , 2015 , 17, 5900-5905	3.3	12
83	Cooling Growth of Millimeter-Size Single-Crystal Bilayer Graphene at Atmospheric Pressure. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 13596-13603	3.8	12
82	Side-to-Side Cold Welding for Controllable Nanogap Formation from "Dumbbell" Ultrathin Gold Nanorods. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	12
81	Recent Advances on In Situ SEM Mechanical and Electrical Characterization of Low-Dimensional Nanomaterials. <i>Scanning</i> , 2017 , 2017, 1985149	1.6	12
80	Selective synthesis of $Zn(1 - x)Mn(x)Se$ nanobelts and nanotubes from $[Zn(1 - x)Mn(x)Se](DETA)0.5$ nanbelts in solution (x = 0-0.15) and their EPR and optical properties. <i>Langmuir</i> , 2010 , 26, 12882-9	4	12
79	Multilayer ceramic film capacitors for high-performance energy storage: progress and outlook. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9462-9480	13	12
78	Size-dependent fracture behavior of silver nanowires. <i>Nanotechnology</i> , 2018 , 29, 295703	3.4	11
77	Lanthanide co-doped paramagnetic spindle-like mesocrystals for imaging and autophagy induction. <i>Nanoscale</i> , 2016 , 8, 13399-406	7.7	11
76	Self-assembled KCuS nanowire monolayers for self-powered near-infrared photodetectors. <i>Nanoscale</i> , 2018 , 10, 18502-18509	7.7	11
75	Hollow medium-entropy alloy nanolattices with ultrahigh energy absorption and resilience. <i>NPG Asia Materials</i> , 2021 , 13,	10.3	11

74	Digital Micromirror Device (DMD)-Based High-Cycle Torsional Fatigue Testing Micromachine for 1D Nanomaterials. <i>Micromachines</i> , 2016 , 7,	3.3	11
73	Nano electromechanical approach for flexible piezoresistive sensor. <i>Applied Materials Today</i> , 2020 , 18, 100475	6.6	11
72	Natural Porous Biomass Carbons Derived from Loofah Sponge for Construction of SnO2@C Composite: A Smart Strategy to Fabricate Sustainable Anodes for Lilbn Batteries. <i>ChemistrySelect</i> , 2018 , 3, 5883-5890	1.8	11
71	Annealing-induced abnormal hardening in nanocrystalline NbMoTaW high-entropy alloy thin films. <i>Materials Letters</i> , 2020 , 275, 128097	3.3	10
70	Evolution of Hollow N-Doped Mesoporous Carbon Microspheres from Outdated Milk as Sulfur Cathodes for Lithium-Sulfur Batteries. <i>ChemistrySelect</i> , 2018 , 3, 3952-3957	1.8	10
69	Biomimetic and Radially Symmetric Graphene Aerogel for Flexible Electronics. <i>Advanced Electronic Materials</i> , 2019 , 5, 1900353	6.4	10
68	Bioinspired Unidirectional Silk Fibroin-Silver Compound Nanowire Composite Scaffold via Interface-Mediated In Situ Synthesis. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14152-14156	16.4	10
67	Stable Gold Nanorods Conjugated Liposomal Podophyllotoxin Nanocomposites for Synergistic Chemo-Photothermal Cancer Therapy. <i>Journal of Biomedical Nanotechnology</i> , 2017 , 13, 1435-1445	4	10
66	A Magneto-Heated Ferrimagnetic Sponge for Continuous Recovery of Viscous Crude Oil. <i>Advanced Materials</i> , 2021 , 33, e2100074	24	10
65	Controlled synthesis of hierarchical CoMn2O4 nanostructures for flexible all-solid-state battery-type electrodes. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 1579-1587	2.6	9
64	A liposomal curcumol nanocomposite for magnetic resonance imaging and endoplasmic reticulum stress-mediated chemotherapy of human primary ovarian cancer. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 2938-2947	7.3	9
63	Encapsulation of Se/C into ultra-thin Ni(OH)2 nanosheets as cathode materials for lithium-selenium batteries. <i>Journal of Solid State Electrochemistry</i> , 2017 , 21, 3611-3618	2.6	9
62	Stereolithography (SLA) 3D printing of carbon fiber-graphene oxide (CF-GO) reinforced polymer lattices. <i>Nanotechnology</i> , 2021 , 32,	3.4	9
61	Activatable Cell-Penetrating Peptide Conjugated Polymeric Nanoparticles with Gd-Chelation and Aggregation-Induced Emission for Bimodal MR and Fluorescence Imaging of Tumors <i>ACS Applied Bio Materials</i> , 2020 , 3, 1394-1405	4.1	8
60	Controllable high-throughput fabrication of porous gold nanorods driven by Rayleigh instability. <i>RSC Advances</i> , 2016 , 6, 66484-66489	3.7	8
59	Understanding the tensile behaviors of ultra-thin ZnO nanowires via molecular dynamics simulations. <i>AIP Advances</i> , 2016 , 6, 035111	1.5	8
58	The Core-Shell Heterostructure CNT@LiFeSiO@C as a Highly Stable Cathode Material for Lithium-Ion Batteries. <i>Nanoscale Research Letters</i> , 2019 , 14, 326	5	8
57	Large Elastic Deformation and Defect Tolerance of Hexagonal Boron Nitride Monolayers. <i>Cell Reports Physical Science</i> , 2020 , 1, 100172	6.1	8

(2019-2021)

56	Magnetically Actuated Active Deep Tumor Penetration of Deformable Large Nanocarriers for Enhanced Cancer Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2103655	15.6	8
55	Experimental nanomechanics of 2D materials for strain engineering. <i>Applied Nanoscience</i> (Switzerland), 2021 , 11, 1075-1091	3.3	8
54	Ultralight supercapacitors utilizing waste cotton pads for wearable energy storage. <i>Dalton Transactions</i> , 2018 , 47, 16684-16695	4.3	8
53	Facile fabrication of a novel nanoporous Au/AgO composite for electrochemical double-layer capacitor. <i>RSC Advances</i> , 2015 , 5, 38995-39002	3.7	7
52	Copper nanocoils synthesized through solvothermal method. <i>Scientific Reports</i> , 2015 , 5, 16879	4.9	7
51	The Effect of Protein Fusions on the Production and Mechanical Properties of Protein-Based Materials. <i>Advanced Functional Materials</i> , 2015 , 25, 1442-1450	15.6	7
50	Spontaneous formation of hierarchically structured curly films of nickel carbonate hydrate through drying. <i>Langmuir</i> , 2010 , 26, 10102-10	4	7
49	Atomic arrangement in CuZr-based metallic glass composites under tensile deformation. <i>Physical Chemistry Chemical Physics</i> , 2019 , 22, 313-324	3.6	7
48	Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading. <i>Journal of Applied Physics</i> , 2016 , 119, 155102	2.5	7
47	Fracture of a silicon nanowire at ultra-large elastic strain. Acta Mechanica, 2019 , 230, 1441-1449	2.1	7
46	Digital micromirror device (DMD)-based high-cycle tensile fatigue testing of 1D nanomaterials. <i>Extreme Mechanics Letters</i> , 2018 , 18, 79-85	3.9	6
45	In situ tensile fracturing of multilayer graphene nanosheets for their in-plane mechanical properties. <i>Nanotechnology</i> , 2019 , 30, 475708	3.4	6
44	Recent developments in testing techniques for elastic mechanical properties of 1-D nanomaterials. <i>Recent Patents on Nanotechnology</i> , 2015 , 9, 33-42	1.2	6
43	Programmable mechanical metamaterials based on hierarchical rotating structures. <i>International Journal of Solids and Structures</i> , 2021 , 216, 145-155	3.1	6
42	Rooting MnO2 nanosheet on carbon nanoboxes as efficient catalytic host for lithium ulfur battery. <i>Journal of Solid State Electrochemistry</i> , 2021 , 25, 505-512	2.6	6
41	Nacreous aramid-mica bulk materials with excellent mechanical properties and environmental stability. <i>IScience</i> , 2021 , 24, 101971	6.1	6
40	□nzipping៤f twin lamella in nanotwinned nickel nanowires under flexural bending. <i>Materials Research Letters</i> , 2018 , 6, 13-21	7.4	6
39	Interaction between recrystallization and helium behavior in cold-rolled nickel. <i>Materials Letters</i> , 2019 , 250, 68-71	3.3	5

38	In Situ SEM Torsion Test of Metallic Glass Microwires Based on Micro Robotic Manipulation. <i>Scanning</i> , 2017 , 2017, 6215691	1.6	5
37	Bioinspired Unidirectional Silk Fibroin Bilver Compound Nanowire Composite Scaffold via Interface-Mediated In Situ Synthesis. <i>Angewandte Chemie</i> , 2019 , 131, 14290-14294	3.6	5
36	A study of strain-induced indirect-direct bandgap transition for silicon nanowire applications. <i>Journal of Applied Physics</i> , 2019 , 125, 082520	2.5	5
35	Counterintuitive Ballistic and Directional Liquid Transport on a Flexible Droplet Rectifier. <i>Research</i> , 2020 , 2020, 6472313	7.8	5
34	In situ mechanical characterization of silver nanowire/graphene hybrids films for flexible electronics. <i>International Journal of Smart and Nano Materials</i> , 2020 , 11, 265-276	3.6	5
33	Brittle-to-ductile transition of Au2Al and AuAl2 intermetallic compounds in wire bonding. <i>Journal of Materials Science: Materials in Electronics</i> , 2019 , 30, 862-866	2.1	5
32	Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PBL). ACS Applied Materials & District Stretchable Microelectronics by Projection Microstereolithography (PBL). ACS Applied Materials & District Stretchable Microelectronics by Projection Microstereolithography (PBL). ACS Applied Materials & District Stretchable Microelectronics by Projection Microstereolithography (PBL). ACS Applied Materials & District Stretchable Microelectronics by Projection Microstereolithography (PBL). ACS Applied Materials & District Stretchable Microelectronics by Projection Microstereolithography (PBL). ACS Applied Materials & District Stretchable Microelectronics by Projection Microstereolithography (PBL). ACS Applied Materials & District Stretchable Microelectronics by Projection Microstereolithography (PBL). ACS Applied Materials & District Stretchable Microelectronics by Projection Microstereolithography (PBL).	9.5	5
31	Epitaxial growth of ultrathin layers on the surface of sub-10hm nanoparticles: the case of ENaGdF:Yb/Er@NaDyF nanoparticles <i>RSC Advances</i> , 2018 , 8, 12944-12950	3.7	4
30	Catalytic Asymmetric Inverse-Electron-Demand Diels-Alder Reactions of 2-Pyrones with Indenes: Total Syntheses of Cephanolides A and B. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26610-2	.6 6 9 .4	4
29	Sequential Growth of High Quality Sub-10 nm Core-Shell Nanocrystals: Understanding the Nucleation and Growth Process Using Dynamic Light Scattering. <i>Langmuir</i> , 2019 , 35, 489-494	4	4
28	In situ assembly of magnetic nanocrystals/graphene oxide nanosheets on tumor cells enables efficient cancer therapy. <i>Nano Research</i> , 2020 , 13, 1133-1140	10	4
27	Armoring SiOx with a conformal LiF layer to boost lithium storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 7807-7816	13	4
26	Thermal-Responsive Magnetic Hydrogel for Multidisciplinary Therapy of Hepatocellular Carcinoma <i>Nano Letters</i> , 2022 ,	11.5	4
25	Reliability of tensile fracture strength of Co-based metallic glass microwires by Weibull statistics. <i>Materials Research Express</i> , 2019 , 6, 106565	1.7	3
24	Size-dependent fracture behavior of GaN pillars under room temperature compression. <i>Nanoscale</i> , 2020 , 12, 23241-23247	7.7	3
23	Cellulose membranes as moisture-driven actuators with predetermined deformations and high load uptake. <i>International Journal of Smart and Nano Materials</i> ,1-11	3.6	3
22	Microwave-Assisted Facile Synthesis of Eu(OH) Nanoclusters with Pro-Proliferative Activity Mediated by miR-199a-3p. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 31044-31053	9.5	3
21	Deep Ultra-Strength⊡nduced Band Structure Evolution in Silicon Nanowires. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 15780-15785	3.8	3

(2021-2019)

20	Hierarchical hollow microcuboid LiNi0.5Mn1.5O4 as cathode material with excellent rate and cycling performance for lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2019 , 23, 2927-29	3 5 .6	2
19	High-Efficiency Cellular Reprogramming by Nanoscale Puncturing. <i>Nano Letters</i> , 2020 , 20, 5473-5481	11.5	2
18	Optimization on conditions of podophyllotoxin-loaded liposomes using response surface methodology and its activity on PC3 cells. <i>Journal of Liposome Research</i> , 2019 , 29, 133-141	6.1	2
17	Deep Elastic Strain Engineering of 2D Materials and Their Twisted Bilayers <i>ACS Applied Materials</i> & Amp; Interfaces, 2022,	9.5	2
16	Defect Engineering Boosted Ultrahigh Thermoelectric Power Conversion Efficiency in Polycrystalline SnSe. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 ,	9.5	2
15	Cold welding assisted self-healing of fractured ultrathin Au nanowires. <i>Nano Express</i> , 2020 , 1, 020014	2	2
14	Optimizing film thickness to delay strut fracture in high-entropy alloy composite microlattices. <i>International Journal of Extreme Manufacturing</i> , 2021 , 3, 025101	7.9	2
13	Microscopic pillars and tubes fabricated by using fish dentine as a molding template. <i>International Journal of Molecular Sciences</i> , 2014 , 15, 14909-20	6.3	1
12	Hydrogels: Photothermally Sensitive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light-Controlled Liquid Microvalves (Adv. Funct. Mater. 19/2012). <i>Advanced Functional Materials</i> , 2012 , 22, 4016-4016	15.6	1
11	TiN@C nanocages as multifunctional sulfur hosts for superior lithium-sulfur batteries. <i>Dalton Transactions</i> , 2021 , 50, 17120-17128	4.3	1
10	Two-dimensional mechanical metamaterials with bending-induced expansion behavior. <i>Applied Physics Letters</i> , 2020 , 117, 011904	3.4	1
9	3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption. <i>IScience</i> , 2021 , 24, 102789	6.1	1
8	Atomic Study on Tension Behaviors of Sub-10 nm NanoPolycrystalline Cu-Ta Alloy. <i>Materials</i> , 2019 , 12,	3.5	1
7	Hierarchical crumpled NiMnO@MXene composites for high rate ion transport electrochemical supercapacitors. <i>Dalton Transactions</i> , 2021 , 50, 9827-9832	4.3	1
6	Abnormal nonlocal scale effect on static bending of single-layer MoS. <i>Nanotechnology</i> , 2017 , 28, 21570	63.4	O
5	Rāktitelbild: Bioinspired Unidirectional Silk FibroinBilver Compound Nanowire Composite Scaffold via Interface-Mediated In Situ Synthesis (Angew. Chem. 40/2019). <i>Angewandte Chemie</i> , 2019 , 131, 14528-14528	3.6	O
4	AN EFFICIENT METHOD FOR THE RESOLUTION OF KEY INTERMEDIATE TO D-BIOTIN VIA CHIRAL AMINES. <i>Synthetic Communications</i> , 2002 , 32, 781-784	1.7	0
3	Catalytic Asymmetric Inverse-Electron-Demand DielsAlder Reactions of 2-Pyrones with Indenes: Total Syntheses of Cephanolides A and B. <i>Angewandte Chemie</i> , 2021 , 133, 26814	3.6	O

- Gene Delivery: Synthesis of Tunable Theranostic Fe3O4@Mesoporous Silica Nanospheres for Biomedical Applications (Adv. Healthcare Mater. 3/2012). *Advanced Healthcare Materials*, **2012**, 1, 326-326
- Hybrid Nanorings: Magnetic Alloy Nanorings Loaded with Gold Nanoparticles: Synthesis and Applications as Multimodal Imaging Contrast Agents (Adv. Funct. Mater. 21/2010). *Advanced Functional Materials*, **2010**, 20, 3618-3618

15.6