
Stella Georgiadou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6421026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Scaffold Pore Morphologies on Glucose Transport Limitations in Hollow Fibre Membrane Bioreactor for Bone Tissue Engineering: Experiments and Numerical Modelling. Membranes, 2021, 11, 257.	1.4	10
2	Chitosan & Conductive PANI/Chitosan Composite Nanofibers - Evaluation of Antibacterial Properties. Current Nanomaterials, 2019, 4, 6-20.	0.2	14
3	Production of molecularly imprinted polymer particles with amide-decorated cavities for CO 2 capture using membrane emulsification/suspension polymerisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 231-238.	2.3	34
4	Biocompatibility Assessment of Conducting PANI/Chitosan Nanofibers for Wound Healing Applications. Polymers, 2017, 9, 687.	2.0	58
5	Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices. Membranes, 2016, 6, 29.	1.4	11
6	Assessing the Increase in Specific Surface Area for Electrospun Fibrous Network due to Pore Induction. ACS Applied Materials & Interfaces, 2016, 8, 29148-29154.	4.0	13
7	Production of spherical mesoporous molecularly imprinted polymer particles containing tunable amine decorated nanocavities with CO 2 molecule recognition properties. Chemical Engineering Journal, 2016, 306, 214-225.	6.6	32
8	Porous electrospun polycaprolactone fibers: Effect of process parameters. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1878-1888.	2.4	18
9	Electrospinning of poly(lactic acid): Theoretical approach for the solvent selection to produce defectâ€free nanofibers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1483-1498.	2.4	50
10	Porous electrospun polycaprolactone (PCL) fibres by phase separation. European Polymer Journal, 2015, 69, 284-295.	2.6	204
11	Conductive PANI fibers and determining factors for the electrospinning window. Polymer, 2015, 77, 143-151.	1.8	42
12	PIT tuning effects of hydrophobic co-surfactants and drugs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 455, 1-10.	2.3	6
13	Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 2014, 55, 4728-4737.	1.8	275
14	pH-Sensitive Micelles for Targeted Drug Delivery Prepared Using a Novel Membrane Contactor Method. ACS Applied Materials & Interfaces, 2013, 5, 8939-8947.	4.0	38
15	Synthesis and micellization of a pH-sensitive diblock copolymer for drug delivery. International Journal of Pharmaceutics, 2013, 455, 5-13.	2.6	28
16	Dispersion of nanoparticles in poly(vinyl chloride) grains during <i>In situ</i> polymerization. Journal of Applied Polymer Science, 2012, 124, 1824-1830.	1.3	7
17	Nonaqueous polymerization of vinyl chloride: An environmentally friendly process. Journal of Applied Polymer Science, 2009, 112, 2472-2481.	1.3	12
18	Suspension polymerisation of vinyl chloride in presence of ultra fine filler particles. Plastics, Rubber and Composites, 2008, 37, 431-435.	0.9	4

#	Article	IF	CITATIONS
19	The use of polyelectrolyte stabilisers for suspension polymerisation: the effect of pH on particle size distribution. Polymer International, 2006, 55, 525-534.	1.6	6
20	Suspension polymerisation of methyl methacrylate using ammonium polymethacrylate as a suspending agent. Chemical Engineering Science, 2006, 61, 6892-6901.	1.9	15
21	Suspension polymerisation of methyl methacrylate using sodium polymethacrylate as a suspending agent. Chemical Engineering Science, 2005, 60, 7137-7152.	1.9	12