Maciej Jaworski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6420086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Approach to Descriptors Generation for Image Retrieval by Analyzing Activations of Deep Neural Network Layers. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 7913-7920.	7.2	8
2	Monitoring of Changes in Data Stream Distribution Using Convolutional Restricted Boltzmann Machines. Lecture Notes in Computer Science, 2021, , 338-346.	1.0	1
3	On the Parzen Kernel-Based Probability Density Function Learning Procedures Over Time-Varying Streaming Data With Applications to Pattern Classification. IEEE Transactions on Cybernetics, 2020, 50, 1683-1696.	6.2	42
4	Stream Data Mining: Algorithms and Their Probabilistic Properties. Studies in Big Data, 2020, , .	0.8	26
5	Nonparametric Regression Models for Data Streams Based on the Generalized Regression Neural Networks. Studies in Big Data, 2020, , 173-244.	0.8	1
6	Decision Trees in Data Stream Mining. Studies in Big Data, 2020, , 37-50.	0.8	4
7	Probabilistic Neural Networks for the Streaming Data Classification. Studies in Big Data, 2020, , 245-277.	0.8	2
8	Basic Concepts of Data Stream Mining. Studies in Big Data, 2020, , 13-33.	0.8	6
9	General Non-parametric Learning Procedure for Tracking Concept Drift. Studies in Big Data, 2020, , 155-172.	0.8	1
10	On Training Deep Neural Networks Using a Streaming Approach. Journal of Artificial Intelligence and Soft Computing Research, 2020, 10, 15-26.	3.5	24
11	Final Remarks and Challenging Problems. Studies in Big Data, 2020, , 323-327.	0.8	0
12	Misclassification Error Impurity Measure. Studies in Big Data, 2020, , 63-82.	0.8	0
13	Introduction and Overview of the Main Results of the Book. Studies in Big Data, 2020, , 1-10.	0.8	0
14	Splitting Criteria with the Bias Term. Studies in Big Data, 2020, , 83-89.	0.8	0
15	The General Procedure of Ensembles Construction in Data Stream Scenarios. Studies in Big Data, 2020, , 281-286.	0.8	0
16	Explainable Cluster-Based Rules Generation for Image Retrieval and Classification. Lecture Notes in Computer Science, 2020, , 85-94.	1.0	1
17	Concept Drift Detection Using Autoencoders in Data Streams Processing. Lecture Notes in Computer Science, 2020, , 124-133.	1.0	10
18	Resource-Aware Data Stream Mining Using the Restricted Boltzmann Machine. Lecture Notes in Computer Science, 2019, , 384-396.	1.0	8

Maciej Jaworski

#	Article	IF	CITATIONS
19	On Explainable Flexible Fuzzy Recommender and Its Performance Evaluation Using the Akaike Information Criterion. Communications in Computer and Information Science, 2019, , 717-724.	0.4	15
20	On Handling Missing Values in Data Stream Mining Algorithms Based on the Restricted Boltzmann Machine. Communications in Computer and Information Science, 2019, , 347-354.	0.4	4
21	New Splitting Criteria for Decision Trees in Stationary Data Streams. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 2516-2529.	7.2	77
22	Knowledge discovery in data streams with the orthogonal series-based generalized regression neural networks. Information Sciences, 2018, 460-461, 497-518.	4.0	26
23	Convergent Time-Varying Regression Models for Data Streams: Tracking Concept Drift by the Recursive Parzen-Based Generalized Regression Neural Networks. International Journal of Neural Systems, 2018, 28, 1750048.	3.2	29
24	Concept Drift Detection in Streams of Labelled Data Using the Restricted Boltzmann Machine. , 2018, , .		12
25	Online GRNN-Based Ensembles forÂRegression on Evolving Data Streams. Lecture Notes in Computer Science, 2018, , 221-228.	1.0	6
26	Estimation of Probability Density Function, Differential Entropy and Other Relative Quantities for Data Streams with Concept Drift. Lecture Notes in Computer Science, 2018, , 376-386.	1.0	1
27	Regression Function and Noise Variance Tracking Methods for Data Streams with Concept Drift. International Journal of Applied Mathematics and Computer Science, 2018, 28, 559-567.	1.5	10
28	How to adjust an ensemble size in stream data mining?. Information Sciences, 2017, 381, 46-54.	4.0	62
29	On ensemble components selection in data streams scenario with reoccurring concept-drift. , 2017, , .		11
30	On applying the Restricted Boltzmann Machine to active concept drift detection. , 2017, , .		22
31	Heuristic Regression Function Estimation Methods for Data Streams with Concept Drift. Lecture Notes in Computer Science, 2017, , 726-737.	1.0	10
32	Hybrid Splitting Criterion in Decision Trees for Data Stream Mining. Lecture Notes in Computer Science, 2016, , 60-72.	1.0	4
33	A method for automatic adjustment of ensemble size in stream data mining. , 2016, , .		17
34	On the Application of Orthogonal Series Density Estimation for Image Classification Based on Feature Description. Advances in Intelligent Systems and Computing, 2016, , 529-540.	0.5	0
35	On the CesÃro-Means-Based Orthogonal Series Approach to Learning Time-Varying Regression Functions. Lecture Notes in Computer Science, 2016, , 37-48.	1.0	2
36	A New Method for Data Stream Mining Based on the Misclassification Error. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26, 1048-1059.	7.2	91

Maciej Jaworski

#	Article	IF	CITATIONS
37	The Parzen kernel approach to learning in non-stationary environment. , 2014, , .		11
38	A novel application of Hoeffding's inequality to decision trees construction for data streams. , 2014, , \cdot		12
39	Decision Trees for Mining Data Streams Based on the Gaussian Approximation. IEEE Transactions on Knowledge and Data Engineering, 2014, 26, 108-119.	4.0	135
40	The CART decision tree for mining data streams. Information Sciences, 2014, 266, 1-15.	4.0	246
41	Decision Trees for Mining Data Streams Based on the McDiarmid's Bound. IEEE Transactions on Knowledge and Data Engineering, 2013, 25, 1272-1279.	4.0	157
42	Adaptation of Decision Trees for Handling Concept Drift. Lecture Notes in Computer Science, 2013, , 459-473.	1.0	21
43	On Pre-processing Algorithms for Data Stream. Lecture Notes in Computer Science, 2012, , 56-63.	1.0	17
44	On the Application of the Parzen-Type Kernel Regression Neural Network and Order Statistics for Learning in a Non-stationary Environment. Lecture Notes in Computer Science, 2012, , 90-98.	1.0	16
45	A New Fuzzy Classifier for Data Streams. Lecture Notes in Computer Science, 2012, , 318-324.	1.0	18
46	On the Strong Convergence of the Orthogonal Series-Type Kernel Regression Neural Networks in a Non-stationary Environment. Lecture Notes in Computer Science, 2012, , 47-54.	1.0	17
47	On Fuzzy Clustering of Data Streams with Concept Drift. Lecture Notes in Computer Science, 2012, , 82-91.	1.0	16
48	On Resources Optimization in Fuzzy Clustering of Data Streams. Lecture Notes in Computer Science, 2012, , 92-99.	1.0	16
49	Learning in a Time-Varying Environment by Making Use of the Stochastic Approximation and Orthogonal Series-Type Kernel Probabilistic Neural Network. Lecture Notes in Computer Science, 2012, , 539-548.	1.0	0
50	On Learning in a Time-Varying Environment by Using a Probabilistic Neural Network and the Recursive Least Squares Method. Lecture Notes in Computer Science, 2012, , 99-110.	1.0	0
51	Learning in a Non-stationary Environment Using the Recursive Least Squares Method and Orthogonal-Series Type Regression Neural Network. Lecture Notes in Computer Science, 2012, , 480-489.	1.0	0
52	On the Application of the Parzen-Type Kernel Probabilistic Neural Network and Recursive Least Squares Method for Learning in a Time-Varying Environment. Lecture Notes in Computer Science, 2012, , 490-500.	1.0	0