James P Verdon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6420003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D seismic interpretation and fault slip potential analysis from hydraulic fracturing in the Bowland Shale, UK. Petroleum Geoscience, 2022, 28, .	1.5	6
2	Coupled Poroelastic Modeling of Hydraulic Fracturingâ€Induced Seismicity: Implications for Understanding the Post Shutâ€In <i>M</i> _{<i>L</i>} 2.9 Earthquake at the Preston New Road, UK. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	5
3	Seismic Anisotropy Reveals Stress Changes around a Fault as It Is Activated by Hydraulic Fracturing. Seismological Research Letters, 2022, 93, 1737-1752.	1.9	4
4	High-Resolution Imaging of the MLÂ2.9 August 2019 Earthquake in Lancashire, United Kingdom, Induced by Hydraulic Fracturing during Preston New Road PNR-2 Operations. Seismological Research Letters, 2021, 92, 151-169.	1.9	23
5	Green, yellow, red, or out of the blue? An assessment of Traffic Light Schemes to mitigate the impact of hydraulic fracturing-induced seismicity. Journal of Seismology, 2021, 25, 301-326.	1.3	38
6	Large cale Fracture Systems Are Permeable Pathways for Fault Activation During Hydraulic Fracturing. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020311.	3.4	40
7	Field measurements of fracture characteristics on a wave-cut platform. Interpretation, 2021, 9, T453-T462.	1.1	0
8	Fault Triggering Mechanisms for Hydraulic Fracturing-Induced Seismicity From the Preston New Road, UK Case Study. Frontiers in Earth Science, 2021, 9, .	1.8	10
9	Evaluating rock mass disturbance within open-pit excavations using seismic methods: A case study from the Hinkley Point C nuclear power station. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13, 500-512.	8.1	15
10	Comment on "Activation Rate of Seismicity for Hydraulic Fracture Wells in the Western Canadian Sedimentary Basin―by Hadi Ghofrani and Gail M. Atkinson. Bulletin of the Seismological Society of America, 2021, 111, 3459-3474.	2.3	7
11	Application of machine learning to microseismic event detection in distributed acoustic sensing data. Geophysics, 2020, 85, KS149-KS160.	2.6	53
12	A Shallow Earthquake Swarm Close to Hydrocarbon Activities: Discriminating between Natural and Induced Causes for the 2018–2019 Surrey, United Kingdom, Earthquake Sequence. Seismological Research Letters, 2019, 90, 2095-2110.	1.9	15
13	Realâ€Time Imaging, Forecasting, and Management of Humanâ€Induced Seismicity at Preston New Road, Lancashire, England. Seismological Research Letters, 2019, , .	1.9	23
14	How big is a small earthquake? Challenges in determining microseismic magnitudes. First Break, 2019, 37, 51-56.	0.4	19
15	Seismicity induced by longwall coal mining at the Thoresby Colliery, Nottinghamshire, U.K Geophysical Journal International, 2018, 212, 942-954.	2.4	12
16	Examining the Capability of Statistical Models to Mitigate Induced Seismicity during Hydraulic Fracturing of Shale Gas Reservoirs. Bulletin of the Seismological Society of America, 2018, 108, 690-701.	2.3	25
17	Results of downhole microseismic monitoring at a pilot hydraulic fracturing site in Poland — Part 2: S-wave splitting analysis. Interpretation, 2018, 6, SH49-SH58.	1.1	9
18	Local Magnitude Discrepancies for Nearâ€Event Receivers: Implications for the U.K. Traffic‣ight Scheme. Bulletin of the Seismological Society of America, 2017, 107, 532-541.	2.3	26

JAMES P VERDON

#	Article	IF	CITATIONS
19	Using beamforming to maximise the detection capability of small, sparse seismometer arrays deployed to monitor oil field activities. Geophysical Prospecting, 2017, 65, 1582-1596.	1.9	15
20	Using microseismic data recorded at the Weyburn CCS-EOR site to assess the likelihood of induced seismic activity. International Journal of Greenhouse Gas Control, 2016, 54, 421-428.	4.6	15
21	Carbon capture and storage, geomechanics and induced seismic activity. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8, 928-935.	8.1	29
22	Reservoir stress path and induced seismic anisotropy: results from linking coupled fluid-flow/geomechanical simulation with seismic modelling. Petroleum Science, 2016, 13, 669-684.	4.9	10
23	Subsurface fluid injection and induced seismicity in southeast Saskatchewan. International Journal of Greenhouse Gas Control, 2016, 54, 429-440.	4.6	19
24	Water, oceanic fracture zones and the lubrication of subducting plate boundaries—insights from seismicity. Geophysical Journal International, 2016, 204, 1405-1420.	2.4	42
25	UK public perceptions of shale gas hydraulic fracturing: The role of audience, message and contextual factors on risk perceptions and policy support. Applied Energy, 2015, 160, 419-430.	10.1	102
26	The microseismic response at the In Salah Carbon Capture and Storage (CCS) site. International Journal of Greenhouse Gas Control, 2015, 32, 159-171.	4.6	82
27	Simulation of seismic events induced by CO2 injection at In Salah, Algeria. Earth and Planetary Science Letters, 2015, 426, 118-129.	4.4	43
28	Integrated hydro-mechanical and seismic modelling of the Valhall reservoir: A case study of predicting subsidence, AVOA and microseismicity. Geomechanics for Energy and the Environment, 2015, 2, 32-44.	2.5	37
29	Seismic characterization of fracture compliance in the field using <i>P</i> - and <i>S</i> -wave sources. Geophysical Journal International, 2015, 203, 1726-1737.	2.4	10
30	Assessing the Effect of Velocity Model Accuracy on Microseismic Interpretation at the In Salah Carbon Capture and Storage Site. Energy Procedia, 2014, 63, 4385-4393.	1.8	12
31	Significance for secure CO ₂ storage of earthquakes induced by fluid injection. Environmental Research Letters, 2014, 9, 064022.	5.2	65
32	Seismic waveforms and velocity model heterogeneity: Towards a full-waveform microseismic location algorithm. Journal of Applied Geophysics, 2014, 111, 228-233.	2.1	12
33	Monitoring increases in fracture connectivity during hydraulic stimulations from temporal variations in shear wave splitting polarization. Geophysical Journal International, 2013, 195, 1120-1131.	2.4	30
34	Comparison of geomechanical deformation induced by megatonne-scale CO ₂ storage at Sleipner, Weyburn, and In Salah. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2762-71.	7.1	173
35	Influence of a velocity model and source frequency on microseismic waveforms: some implications for microseismic locations. Geophysical Prospecting, 2013, 61, 334-345.	1.9	35
36	Measurement of the normal/tangential fracture compliance ratio (<i>Z</i> _{<i>N</i>} / <i>Z</i> _{<i>T</i>}) during hydraulic fracture stimulation using Sâ€wave splitting data. Geophysical Prospecting, 2013, 61, 461-475.	1.9	69

JAMES P VERDON

#	Article	IF	CITATIONS
37	Monitoring carbon dioxide storage using passive seismic techniques. Proceedings of Institution of Civil Engineers: Energy, 2012, 165, 85-96.	0.6	5
38	Forward Modelling of Seismic Properties. , 2012, , 141-151.		0
39	A Comparison of Microseismic Monitoring of Fracture Stimulation Due to Water Versus \$\$hbox{CO}_{2}\$\$ Injection. , 2012, , 55-81.		1
40	Linking microseismic event observations with geomechanical models to minimise the risks of storing CO2 in geological formations. Earth and Planetary Science Letters, 2011, 305, 143-152.	4.4	115
41	Inferring rock fracture evolution during reservoir stimulation from seismic anisotropy. Geophysics, 2011, 76, WC157-WC166.	2.6	21
42	Microseismic monitoring and geomechanical modeling of CO2 storage in subsurface reservoirs. Geophysics, 2011, 76, Z102-Z103.	2.6	12
43	In situ monitoring of rock fracturing using shear wave splitting analysis: an example from a mining setting. Geophysical Journal International, 2011, 187, 848-860.	2.4	23
44	Detection of multiple fracture sets using observations of shearâ€wave splitting in microseismic data. Geophysical Prospecting, 2011, 59, 593-608.	1.9	42
45	Reservoir stress path characterization and its implications for fluid-flow production simulations. Petroleum Geoscience, 2011, 17, 335-344.	1.5	44
46	A comparison of passive seismic monitoring of fracture stimulation from water and C O2 injection. Geophysics, 2010, 75, MA1-MA7.	2.6	45
47	Passive seismic monitoring of carbon dioxide storage at Weyburn. The Leading Edge, 2010, 29, 200-206.	0.7	60
48	A strategy for automated analysis of passive microseismic data to image seismic anisotropy and fracture characteristics. Geophysical Prospecting, 2010, 58, 755-773.	1.9	93
49	Imaging fractures and sedimentary fabrics using shear wave splitting measurements made on passive seismic data. Geophysical Journal International, 2009, 179, 1245-1254.	2.4	54
50	Exploring trends in microcrack properties of sedimentary rocks: An audit of dry-core velocity-stress measurements. Geophysics, 2009, 74, E193-E203.	2.6	41
51	The effect of microstructure and nonlinear stress on anisotropic seismic velocities. Geophysics, 2008, 73, D41-D51.	2.6	74
52	The effects of geomechanical deformation on seismic monitoring of CO 2 sequestration. , 2008, , .		3
53	Gravity-driven reacting flows in a confined porous aquifer. Journal of Fluid Mechanics, 2007, 588, 29-41.	3.4	21
54	Microseismic monitoring using a fibre-optic Distributed Acoustic Sensor (DAS) array. Geophysics, 0, , 1-48.	2.6	16