Haokun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6419599/publications.pdf

Version: 2024-02-01

623574 580701 28 633 14 25 citations g-index h-index papers 31 31 31 444 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Mechanical properties study on sandwich hybrid metal/(carbon, glass) fiber reinforcement plastic composite sheet. Advanced Composites and Hybrid Materials, 2022, 5, 83-90.	9.9	26
2	Influence of carbon addition on mechanical properties of Fe–Mn–C twinning-induced plasticity steels. Journal of Iron and Steel Research International, 2022, 29, 1446-1454.	1.4	4
3	Artificial intelligenceâ€essisted fatigue fracture recognition based on morphing and fully convolutional networks. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 1690-1702.	1.7	4
4	Fe–Mn–C–Al Lowâ€Density Steel for Structural Materials: A Review of Alloying, Heat Treatment, Microstructure, and Mechanical Properties. Steel Research International, 2022, 93, .	1.0	14
5	The Twisting of Dome‣ike Metamaterial from Brittle to Ductile. Advanced Science, 2021, 8, 2002701.	5.6	17
6	Fatigue behavior of Al–Al and Al–steel refill friction stir spot welding joints. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 3219-3223.	1.7	2
7	Enhanced tensile ductility of tungsten microwires via high-density dislocations and reduced grain boundaries. Journal of Materials Science and Technology, 2021, 95, 193-202.	5.6	21
8	In situ mechanical characterization of silver nanowire/graphene hybrids films for flexible electronics. International Journal of Smart and Nano Materials, 2020, 11, 265-276.	2.0	10
9	Heavily twinned CoCrNi medium-entropy alloy with superior strength and crack resistance. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139591.	2.6	31
10	Ductile Au4Al intermetallic compound with crack resistance. Intermetallics, 2019, 112, 106555.	1.8	1
11	Grain-size insensitive work-hardening behavior of Ag microwires. Materials Science & Department of Ag Microstructure and Processing, 2019, 759, 655-660.	2.6	1
12	Effects of Pd Surface Coating on the Strength and Fracture Behavior of Cu Micro Bonding Wires. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3013-3018.	1.1	4
13	Dramatic Increase of Strength and Ductility in Fe–22Mn–1.0C Twinningâ€Induced Plasticity Steel at Elevated Temperature. Advanced Engineering Materials, 2019, 21, 1800670.	1.6	1
14	The combined effects of grain and sample sizes on the mechanical properties and fracture modes of gold microwires. Journal of Materials Science and Technology, 2019, 35, 76-83.	5.6	13
15	Brittle-to-ductile transition of Au2Al and AuAl2 intermetallic compounds in wire bonding. Journal of Materials Science: Materials in Electronics, 2019, 30, 862-866.	1.1	7
16	Simultaneously improving the strength and ductility of Fe–22Mn–0.6C twinning-induced plasticity steel via nitrogen addition. Materials Science & Diplementary A: Structural Materials: Properties, Microstructure and Processing, 2018, 715, 276-280.	2.6	29
17	Temperature-Dependence of the Mechanical Responses for Two Types of Twinning-Induced Plasticity Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1475-1480.	1.1	4
18	Revealing the mechanical properties and microstructure evolutions of Fe–22Mn–0.6C–(x)Al TWIP steels via Al alloying control. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 61-70.	2.6	21

#	Article	IF	CITATION
19	Fatigue crack growth in two TWIP steels with different stacking fault energies. International Journal of Fatigue, 2017, 98, 247-258.	2.8	18
20	Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 146-157.	2.6	50
21	A novel ultrafine-grained Fe 22Mn 0.6C TWIP steel with superior strength and ductility. Materials Characterization, 2017, 126, 74-80.	1.9	83
22	Tensile Fracture Modes in Fe-22Mn-0.6C and Fe-30Mn-3Si-3Al Twinning-Induced Plasticity (TWIP) Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4458-4462.	1,1	14
23	Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests. Materials Science & Department of Structural Materials: Properties, Microstructure and Processing, 2016, 672, 7-14.	2.6	13
24	Different strain rate sensitivities between Fe–22Mn–0.6C and Fe–30Mn–3Si–3Al twinning-induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 251-255.	2.6	38
25	Comparison of twinning evolution with work hardening ability in twinning-induced plasticity steel under different strain rates. Materials Science & Discretiang A: Structural Materials: Properties, Microstructure and Processing, 2015, 622, 184-188.	2.6	32
26	The micro morphology correction function of a silicon wafer CMP surface. Journal of Semiconductors, 2014, 35, 053002.	2.0	1
27	Strain rate effects on tensile deformation behaviors for Fe–22Mn–0.6C–(1.5Al) twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 607, 551-558.	2.6	78
28	Comparison of work hardening and deformation twinning evolution in Fe–22Mn–0.6C–(1.5Al) twinning-induced plasticity steels. Scripta Materialia, 2013, 68, 992-995.	2.6	96