
Stefan Berti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6419469/publications.pdf Version: 2024-02-01

STEEAN REDTI

#	Article	IF	CITATIONS
1	Working memory controls involuntary attention switching: evidence from an auditory distraction paradigm. European Journal of Neuroscience, 2003, 17, 1119-1122.	2.6	202
2	A comparison of auditory and visual distraction effects: behavioral and event-related indices. Cognitive Brain Research, 2001, 10, 265-273.	3.0	188
3	Bottom-Up Influences on Working Memory: Behavioral and Electrophysiological Distraction Varies with Distractor Strength. Experimental Psychology, 2004, 51, 249-257.	0.7	148
4	Diagnostic subgroups of developmental dyslexia have different deficits in neural processing of tones and phonemes. International Journal of Psychophysiology, 2005, 56, 105-120.	1.0	121
5	The development of involuntary and voluntary attention from childhood to adulthood: A combined behavioral and event-related potential study. Clinical Neurophysiology, 2006, 117, 2191-2203.	1.5	105
6	Cognitive control after distraction: Eventâ€related brain potentials (ERPs) dissociate between different processes of attentional allocation. Psychophysiology, 2008, 45, 608-620.	2.4	86
7	Distraction effects in vision: behavioral and event-related potential indices. NeuroReport, 2004, 15, 665-669.	1.2	83
8	Examining task-dependencies of different attentional processes as reflected in the P3a and reorienting negativity components of the human event-related brain potential. Neuroscience Letters, 2006, 396, 177-181.	2.1	78
9	Task relevance and recognition of concealed information have different influences on electrodermal activity and event-related brain potentials. Psychophysiology, 2010, 47, 355-364.	2.4	63
10	Auditory distraction with different presentation rates: an event-related potential and behavioral study. Clinical Neurophysiology, 2003, 114, 341-349.	1.5	61
11	Visual distraction: a behavioral and event-related brain potential study in humans. NeuroReport, 2006, 17, 151-155.	1.2	57
12	To switch or not to switch: Brain potential indices of attentional control after task-relevant and task-irrelevant changes of stimulus features. Brain Research, 2010, 1345, 164-175.	2.2	50
13	Event-related brain potentials dissociate visual working memory processes under categorial and identical comparison conditions. Cognitive Brain Research, 2000, 9, 147-155.	3.0	44
14	The role of auditory transient and deviance processing in distraction of task performance: a combined behavioral and event-related brain potential study. Frontiers in Human Neuroscience, 2013, 7, 352.	2.0	43
15	Behavioral and event-related potential distraction effects with regularly occurring auditory deviants. Psychophysiology, 2007, 44, 79-85.	2.4	41
16	The attentional blink demonstrates automatic deviance processing in vision. NeuroReport, 2011, 22, 664-667.	1.2	39
17	Age dependent changes of distractibility and reorienting of attention revisited: An event-related potential study. Brain Research, 2013, 1491, 156-166.	2.2	39
18	Distraction of taskâ€relevant information processing by irrelevant changes in auditory, visual, and bimodal stimulus features: A behavioral and eventâ€related potential study. Psychophysiology, 2009, 46, 645-654.	2.4	38

STEFAN BERTI

#	Article	IF	CITATIONS
19	Distraction and reorientation in children: a behavioral and ERP study. NeuroReport, 2004, 15, 1355-1358.	1.2	33
20	Integration of sensory information precedes the sensation of vection: A combined behavioral and event-related brain potential (ERP) study. Behavioural Brain Research, 2014, 259, 131-136.	2.2	33
21	Response repetition vs. response change modulates behavioral and electrophysiological effects of distraction. Cognitive Brain Research, 2005, 22, 451-456.	3.0	29
22	Object switching within working memory is reflected in the human event-related brain potential. Neuroscience Letters, 2008, 434, 200-205.	2.1	27
23	Effect of Different Display Types on Vection and Its Interaction With Motion Direction and Field Dependence. I-Perception, 2017, 8, 204166951770776.	1.4	25
24	Different Interference Effects in Musicians and a Control Group. Experimental Psychology, 2006, 53, 111-116.	0.7	24
25	Vection lies in the brain of the beholder: EEG parameters as an objective measurement of vection. Frontiers in Psychology, 2015, 6, 1581.	2.1	23
26	P300 amplitudes in the concealed information test are less affected by depth of processing than electrodermal responses. Frontiers in Human Neuroscience, 2012, 6, 308.	2.0	22
27	Automatic processing of rare versus novel auditory stimuli reveal different mechanisms of auditory change detection. NeuroReport, 2012, 23, 441-446.	1.2	22
28	Differences in sensory processing of German vowels and physically matched non-speech sounds as revealed by the mismatch negativity (MMN) of the human event-related brain potential (ERP). Brain and Language, 2014, 136, 8-18.	1.6	18
29	Switching Attention Within Working Memory is Reflected in the P3a Component of the Human Event-Related Brain Potential. Frontiers in Human Neuroscience, 2015, 9, 701.	2.0	18
30	Neuropsychological Approaches to Visually-Induced Vection: an Overview and Evaluation of Neuroimaging and Neurophysiological Studies. Multisensory Research, 2020, 34, 153-186.	1.1	18
31	Primary motor area contribution to attentional reorienting after distraction. NeuroReport, 2008, 19, 443-446.	1.2	17
32	The Orienting Response in Healthy Aging: Novelty P3 Indicates No General Decline but Reduced Efficacy for Fast Stimulation Rates. Frontiers in Psychology, 2017, 8, 1780.	2.1	16
33	Altered orientation of spatial attention in depersonalization disorder. Psychiatry Research, 2014, 216, 230-235.	3.3	15
34	The role of cognitive factors and personality traits in the perception of illusory self-motion (vection). Attention, Perception, and Psychophysics, 2021, 83, 1804-1817.	1.3	15
35	Earlier timbre processing of instrumental tones compared to equally complex spectrally rotated sounds as revealed by the mismatch negativity. Neuroscience Letters, 2014, 581, 115-119.	2.1	14
36	Taking Action or Thinking About It? State Orientation and Rumination Are Correlated in Athletes. Frontiers in Psychology, 2019, 10, 576.	2.1	14

Stefan Berti

#	Article	IF	CITATIONS
37	Position but not color deviants result in visual mismatch negativity in an active oddball task. NeuroReport, 2009, 20, 702-707.	1.2	13
38	Detached and distracted: ERP correlates of altered attentional function in depersonalisation. Biological Psychology, 2018, 134, 64-71.	2.2	13
39	Attentive and pre-attentive periodicity analysis in auditory memory. NeuroReport, 2000, 11, 1883-1887.	1.2	11
40	Age-related changes in amplitude, latency and specialization of ERP responses to faces and watches. Aging, Neuropsychology, and Cognition, 2021, 28, 37-64.	1.3	11
41	Disentangling effects of auditory distraction and of stimulusâ€response sequence. Psychophysiology, 2009, 46, 425-438.	2.4	9
42	Early cortical processing of vection-inducing visual stimulation as measured by event-related brain potentials (ERP). Displays, 2019, 58, 56-65.	3.7	9
43	Encoding into Visual Working Memory: Event-Related Brain Potentials Reflect Automatic Processing of Seemingly Redundant Information. Neuroscience Journal, 2013, 2013, 1-8.	2.5	8
44	Development and preliminary validation of the sports competition rumination scale (SCRS). Journal of Applied Sport Psychology, 2023, 35, 265-283.	2.3	6
45	Encoding of faces and objects into visual working memory. NeuroReport, 2013, 24, 735-740.	1.2	4
46	Exploring the switching of the focus of attention within working memory: A combined event-related potential and behavioral study. International Journal of Psychophysiology, 2018, 126, 30-41.	1.0	4
47	Do categorical representations modulate early automatic visual processing? A visual mismatch-negativity study. Biological Psychology, 2021, 163, 108139.	2.2	4
48	Using Redundant Visual Information From Different Dimensions for Attentional Selection. Journal of Psychophysiology, 2012, 26, 99-104.	0.7	4
49	Do categorical representations modulate early perceptual or later cognitive visual processing? An ERP study. Brain and Cognition, 2021, 150, 105724.	1.8	3
50	Anwendung der sport- und bewegungsbezogenen Selbstkonkordanz auf den Leistungssport. Zeitschrift Fur Sportpsychologie, 2014, 21, 119-126.	0.2	3
51	Visual mismatch negativity (vMMN) is elicited with para-foveal hemifield oddball stimulation: An event-related brain potential (ERP) study. Neuroscience Letters, 2018, 672, 113-117.	2.1	1
52	Self-Distancing as a Strategy to Regulate Affect and Aggressive Behavior in Athletes: An Experimental Approach to Explore Emotion Regulation in the Laboratory. Frontiers in Psychology, 2020, 11, 572030.	2.1	1