
Fletcher A White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6419366/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effectiveness of maturity of Rubus occidentalis on hyperalgesia induced by acidic saline injection in rats. BMC Complementary Medicine and Therapies, 2022, 22, 12.	1.2	2
2	Capsaicin and TRPV1 Channels in the Cardiovascular System: The Role of Inflammation. Cells, 2022, 11, 18.	1.8	23
3	The HMGB1/RAGE axis induces bone pain associated with colonization of 4T1 mouse breast cancer in bone. Journal of Bone Oncology, 2021, 26, 100330.	1.0	21
4	Concentrations of HMGB1 and Hsp70 of healthy subjects in upper and lower airway: Literature Review and Meta-analysis. International Journal of Medical Sciences, 2021, 18, 1760-1767.	1.1	0
5	Transient Receptor Potential Canonical Channels in Health and Disease: A 2020 Update. Cells, 2021, 10, 496.	1.8	1
6	Blocking receptor for advanced glycation end products (RAGE) or tollâ€like receptor 4 (TLR4) prevents posttraumatic epileptogenesis in mice. Epilepsia, 2021, 62, 3105-3116.	2.6	11
7	Physical activity behavior in the first month after mild traumatic brain injury is associated with physiological and psychological risk factors for chronic pain. Pain Reports, 2021, 6, e969.	1.4	3
8	No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone, 2020, 131, 115109.	1.4	63
9	No pain, no gain: Will migraine therapies increase bone loss and impair fracture healing?. EBioMedicine, 2020, 60, 103025.	2.7	5
10	Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells, 2020, 9, 1983.	1.8	88
11	Assessment, Quantification, and Management of Fracture Pain: from Animals to the Clinic. Current Osteoporosis Reports, 2020, 18, 460-470.	1.5	15
12	The TRPC6 inhibitor, larixyl acetate, is effective in protecting against traumatic brain injury-induced systemic endothelial dysfunction. Journal of Neuroinflammation, 2019, 16, 21.	3.1	22
13	High mobility group box 1 protein regulates osteoclastogenesis through direct actions on osteocytes and osteoclasts in vitro. Journal of Cellular Biochemistry, 2019, 120, 16741-16749.	1.2	15
14	Long-Term Diabetic Microenvironment Augments the Decay Rate of Capsaicin-Induced Currents in Mouse Dorsal Root Ganglion Neurons. Molecules, 2019, 24, 775.	1.7	7
15	Towards precision medicine for pain: diagnostic biomarkers and repurposed drugs. Molecular Psychiatry, 2019, 24, 501-522.	4.1	61
16	Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in <i>db/db</i> Mice. Diabetes, 2018, 67, 1867-1879.	0.3	243
17	Small-molecule Ca _V α ₁ â‹Ca _V β antagonist suppresses neuronal voltage-gated calcium-channel trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10566-E10575.	3.3	19
18	Bone Pain Induced by Multiple Myeloma Is Reduced by Targeting V-ATPase and ASIC3. Cancer Research, 2017, 77, 1283-1295.	0.4	81

#	Article	IF	CITATIONS
19	Decoy peptide targeted to Toll-IL-1R domain inhibits LPS and TLR4-active metabolite morphine-3 glucuronide sensitization of sensory neurons. Scientific Reports, 2017, 7, 3741.	1.6	15
20	Electroacupuncture Promotes Central Nervous System-Dependent Release of Mesenchymal Stem Cells. Stem Cells, 2017, 35, 1303-1315.	1.4	37
21	Enhancing excitatory activity of somatosensory cortex alleviates neuropathic pain through regulating homeostatic plasticity. Scientific Reports, 2017, 7, 12743.	1.6	42
22	Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs. Basic Research in Cardiology, 2017, 112, 54.	2.5	33
23	[O4–06–01]: SP1â€MODULATING COMPOUNDS AS A NOVEL DRUG TARGET FOR ALZHEIMER'S DISEASE (A Alzheimer's and Dementia, 2017, 13, P1241.	D) _{0.4}	1
24	Impact of Opioid and Nonopioid Drugs on Postsurgical Pain Management in the Rat. Pain Research and Treatment, 2016, 2016, 1-8.	1.7	6
25	Sustained relief of ongoing experimental neuropathic pain by a CRMP2 peptide aptamer with low abuse potential. Pain, 2016, 157, 2124-2140.	2.0	30
26	Depressed basal hypothalamic neuronal activity in type-1 diabetic mice is correlated with proinflammatory secretion of HMBG1. Neuroscience Letters, 2016, 615, 21-27.	1.0	11
27	Transgenerational latent early-life associated regulation unites environment and genetics across generations. Epigenomics, 2016, 8, 373-387.	1.0	20
28	Acidic microenvironment and bone pain in cancer-colonized bone. BoneKEy Reports, 2015, 4, 690.	2.7	48
29	Contribution of acidic extracellular microenvironment of cancer-colonized bone to bone pain. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2677-2684.	1.4	59
30	The HMGB1-RAGE Inflammatory Pathway: Implications for Brain Injury-Induced Pulmonary Dysfunction. Antioxidants and Redox Signaling, 2015, 23, 1316-1328.	2.5	59
31	Chimeric Agents Derived from the Functionalized Amino Acid, Lacosamide, and the α-Aminoamide, Safinamide: Evaluation of Their Inhibitory Actions on Voltage-Gated Sodium Channels, and Antiseizure and Antinociception Activities and Comparison with Lacosamide and Safinamide. ACS Chemical Neuroscience. 2015. 6. 316-330.	1.7	14
32	The HMGB1-RAGE axis mediates traumatic brain injury–induced pulmonary dysfunction in lung transplantation. Science Translational Medicine, 2014, 6, 252ra124.	5.8	85
33	Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat. Journal of Neurochemistry, 2014, 128, 776-786.	2.1	58
34	Identification of a functional interaction of HMGB1 with Receptor for Advanced Glycation End-products in a model of neuropathic pain. Brain, Behavior, and Immunity, 2014, 42, 169-177.	2.0	76
35	Carbamazepine Potentiates the Effectiveness of Morphine in a Rodent Model of Neuropathic Pain. PLoS ONE, 2014, 9, e107399.	1.1	15
36	Acidic Extracellular Microenvironment in Myeloma-Colonized Bone Contributes to Bone Pain. Blood, 2014, 124, 3397-3397.	0.6	2

#	Article	IF	CITATIONS
37	Suppression of painâ€related behavior in two distinct rodent models of peripheral neuropathy by a homopolyarginineâ€conjugated <scp>CRMP</scp> 2 peptide. Journal of Neurochemistry, 2013, 124, 869-879.	2.1	31
38	Effect of the Phosphodiesterase-5 Inhibitor Zaprinast on Ischemia-Reperfusion Injury in Rats. Journal of Endourology, 2013, 27, 338-342.	1.1	4
39	Inhibition of Transmitter Release and Attenuation of Anti-retroviral-associated and Tibial Nerve Injury-related Painful Peripheral Neuropathy by Novel Synthetic Ca2+ Channel Peptides. Journal of Biological Chemistry, 2012, 287, 35065-35077.	1.6	41
40	Identification of the Benzyloxyphenyl Pharmacophore: A Structural Unit That Promotes Sodium Channel Slow Inactivation. ACS Chemical Neuroscience, 2012, 3, 1037-1049.	1.7	11
41	The persistent release of HMGB1 contributes to tactile hyperalgesia in a rodent model of neuropathic pain. Journal of Neuroinflammation, 2012, 9, 180.	3.1	92
42	Neuroexcitatory effects of morphine-3-glucuronide are dependent on Toll-like receptor 4 signaling. Journal of Neuroinflammation, 2012, 9, 200.	3.1	95
43	The Maintenance of Cisplatin- and Paclitaxel-Induced Mechanical and Cold Allodynia is Suppressed by Cannabinoid CB ₂ Receptor Activation and Independent of CXCR4 Signaling in Models of Chemotherapy-Induced Peripheral Neuropathy. Molecular Pain, 2012, 8, 1744-8069-8-71.	1.0	83
44	CRMP-2 Peptide Mediated Decrease of High and Low Voltage-Activated Calcium Channels, Attenuation of Nociceptor Excitability, and Anti-Nociception in a Model of AIDS Therapy-Induced Painful Peripheral Neuropathy. Molecular Pain, 2012, 8, 1744-8069-8-54.	1.0	48
45	A peptide uncoupling CRMP-2 from the presynaptic Ca2+ channel complex demonstrates efficacy in animal models of migraine and AIDS therapy-induced neuropathy. Translational Neuroscience, 2012, 3, 1-8.	0.7	36
46	Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex. Nature Medicine, 2011, 17, 822-829.	15.2	200
47	Merging Structural Motifs of Functionalized Amino Acids and α-Aminoamides Results in Novel Anticonvulsant Compounds with Significant Effects on Slow and Fast Inactivation of Voltage-Gated Sodium Channels and in the Treatment of Neuropathic Pain. ACS Chemical Neuroscience, 2011, 2, 317-332.	1.7	33
48	CXCR4 signaling mediates morphine-induced tactile hyperalgesia. Brain, Behavior, and Immunity, 2011, 25, 565-573.	2.0	80
49	Sciatic nerve injury induces functional pro-nociceptive chemokine receptors in bladder-associated primary afferent neurons in the rat. Neuroscience, 2011, 183, 230-237.	1.1	20
50	Further insights into the antinociceptive potential of a peptide disrupting the N-type calcium channel–CRMP-2 signaling complex. Channels, 2011, 5, 449-456.	1.5	40
51	Neuroprotection against Traumatic Brain Injury by a Peptide Derived from the Collapsin Response Mediator Protein 2 (CRMP2). Journal of Biological Chemistry, 2011, 286, 37778-37792.	1.6	78
52	Animal Models of HIV-Associated Painful Sensory Neuropathy. Neuromethods, 2011, , 171-179.	0.2	2
53	Insights into the regulation of chemokine receptors by molecular signaling pathways: Functional roles in neuropathic pain. Brain, Behavior, and Immunity, 2010, 24, 859-865.	2.0	30
54	Visualization of Chemokine Receptor Activation in Transgenic Mice Reveals Peripheral Activation of CCR2 Receptors in States of Neuropathic Pain. Journal of Neuroscience, 2009, 29, 8051-8062.	1.7	120

#	Article	IF	CITATIONS
55	Chemokines and pain mechanisms. Brain Research Reviews, 2009, 60, 125-134.	9.1	241
56	Altered functional properties of satellite glial cells in compressed spinal ganglia. Glia, 2009, 57, 1588-1599.	2.5	96
57	Increased Chemokine Signaling in a Model of HIV1-Associated Peripheral Neuropathy. Molecular Pain, 2009, 5, 1744-8069-5-48.	1.0	89
58	Cytokine and Chemokine Regulation of Sensory Neuron Function. Handbook of Experimental Pharmacology, 2009, , 417-449.	0.9	297
59	Chemokine Signaling and the Management of Neuropathic Pain. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2009, 9, 188-195.	3.4	81
60	Monocyte chemoattractant proteinâ€1 functions as a neuromodulator in dorsal root ganglia neurons. Journal of Neurochemistry, 2008, 104, 254-263.	2.1	208
61	IL-1β signaling initiates inflammatory hypernociception. Brain, Behavior, and Immunity, 2008, 22, 1014-1015.	2.0	4
62	Chemokine Action in the Nervous System. Journal of Neuroscience, 2008, 28, 11792-11795.	1.7	120
63	Intrathecal Magnesium Sulfate Administration at the Time of Experimental Ischemia Improves Neurological Functioning by Reducing Acute and Delayed Loss of Motor Neurons in the Spinal Cord. Anesthesiology, 2008, 108, 78-86.	1.3	20
64	Chemokines as pain mediators and modulators. Current Opinion in Anaesthesiology, 2008, 21, 580-585.	0.9	83
65	Neuropathic Pain Mechanisms: A Role for Chemokines. FASEB Journal, 2008, 22, 240.4.	0.2	0
66	Chemokines and the pathophysiology of neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20151-20158.	3.3	323
67	CXCR4 chemokine receptor signaling mediates pain hypersensitivity in association with antiretroviral toxic neuropathy. Brain, Behavior, and Immunity, 2007, 21, 581-591.	2.0	138
68	Delayed Functional Expression of Neuronal Chemokine Receptors Following Focal Nerve Demyelination in the Rat: A Mechanism for the Development of Chronic Sensitization of Peripheral Nociceptors. Molecular Pain, 2007, 3, 1744-8069-3-38.	1.0	149
69	Chemokines: Integrators of Pain and Inflammation. Nature Reviews Drug Discovery, 2005, 4, 834-844.	21.5	238
70	Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14092-14097.	3.3	340
71	Similar Electrophysiological Changes in Axotomized and Neighboring Intact Dorsal Root Ganglion Neurons. Journal of Neurophysiology, 2003, 89, 1588-1602.	0.9	208
72	A-Fiber Sprouting in Spinal Cord Dorsal Horn Is Attenuated by Proximal Nerve Stump Encapsulation. Experimental Neurology, 2002, 177, 385-395.	2.0	12

#	Article	IF	CITATIONS
73	The Paired Homeodomain Protein DRG11 Is Required for the Projection of Cutaneous Sensory Afferent Fibers to the Dorsal Spinal Cord. Neuron, 2001, 31, 59-73.	3.8	126
74	A-fiber sensory input induces neuronal cell death in the dorsal horn of the adult rat spinal cord. Journal of Comparative Neurology, 2001, 435, 276-282.	0.9	57
75	Cloning and Analysis of a Murine PIAS Family Member, PIASγ, in Developing Skin and Neurons. Journal of Molecular Neuroscience, 2000, 14, 107-122.	1.1	12
76	The Development and Subsequent Elimination of Aberrant Peripheral Axon Projections in Semaphorin3A Null Mutant Mice. Developmental Biology, 2000, 225, 79-86.	0.9	43
77	The guidance molecule Semaphorin III is expressed in regions of spinal cord and periphery avoided by growing sensory axons. Journal of Comparative Neurology, 1995, 361, 321-333.	0.9	159
78	Pathophysiology of neuropathic pain: signaling pathways and their magnification – the role of neuronal Toll-like receptors. , 0, , 90-100.		0