Sanna Maria Sillankorva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6419335/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implication of a gene deletion on a Salmonella Enteritidis phage growth parameters. Virus Research, 2022, 308, 198654.	1.1	1
2	Identification of the Bacterial Pathogens in Children with Otitis Media: A Study in the Northwestern Portuguese District of Braga. Microorganisms, 2022, 10, 54.	1.6	7
3	Ex vivo transtympanic permeation of the liposome encapsulated S. pneumoniae endolysin MSlys. International Journal of Pharmaceutics, 2022, 620, 121752.	2.6	Ο
4	Antibiofilm Efficacy of the Pseudomonas aeruginosaÂPbunavirus vB_PaeM-SMS29 Loaded onto Dissolving Polyvinyl Alcohol Microneedles. Viruses, 2022, 14, 964.	1.5	7
5	Suggestion for a new bacteriophage genus for the Klebsiella pneumoniae phageÂvB_KpnS-Carvaje. Current Genetics, 2022, 68, 393-406.	0.8	3
6	The clinical path to deliver encapsulated phages and lysins. FEMS Microbiology Reviews, 2021, 45, .	3.9	20
7	Sustained Release of a <i>Streptococcus pneumoniae</i> Endolysin from Liposomes for Potential Otitis Media Treatment. ACS Infectious Diseases, 2021, 7, 2127-2137.	1.8	14
8	Pseudomonas aeruginosa PAO 1 In Vitro Time–Kill Kinetics Using Single Phages and Phage Formulations—Modulating Death, Adaptation, and Resistance. Antibiotics, 2021, 10, 877.	1.5	5
9	Xanthan-Fe ₃ O ₄ Nanoparticle Composite Hydrogels for Non-Invasive Magnetic Resonance Imaging and Magnetically Assisted Drug Delivery. ACS Applied Nano Materials, 2021, 4, 7712-7729.	2.4	33
10	Biofilm Applications of Bacteriophages. , 2021, , 789-822.		2
11	Entrapment of a phage cocktail and cinnamaldehyde on sodium alginate emulsion-based films to fight food contamination by Escherichia coli and Salmonella Enteritidis. Food Research International, 2020, 128, 108791.	2.9	42
12	The Protective Effect of Staphylococcus epidermidis Biofilm Matrix against Phage Predation. Viruses, 2020, 12, 1076.	1.5	21
13	Characterization of MSlys, the endolysin of Streptococcus pneumoniae phage MS1. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00547.	2.1	14
14	Natural and Induced Antibodies Against Phages in Humans: Induction Kinetics and Immunogenicity for Structural Proteins of PB1-Related Phages. Phage, 2020, 1, 91-99.	0.8	12
15	Inactivation of Pseudomonas aeruginosa in mineral water by DP1 bacteriophage immobilized on ethyleneâ€vinyl acetate copolymer used as seal caps of plastic bottles. Journal of Applied Polymer Science, 2020, 137, 49009.	1.3	6
16	Bacteriophages for Chronic Wound Treatment: From Traditional to Novel Delivery Systems. Viruses, 2020, 12, 235.	1.5	55
17	Otitis media pathogens – A life entrapped in biofilm communities. Critical Reviews in Microbiology, 2019, 45, 595-612.	2.7	25

#	Article	IF	CITATIONS
19	Escherichia coli and Salmonella Enteritidis dual-species biofilms: interspecies interactions and antibiofilm efficacy of phages. Scientific Reports, 2019, 9, 18183.	1.6	34
20	Antimicrobial assessment of phage therapy using a porcine model of biofilm infection. International Journal of Pharmaceutics, 2019, 557, 112-123.	2.6	32
21	Techniques to Assess Phage–Biofilm Interaction. Methods in Molecular Biology, 2019, 1898, 137-146.	0.4	2
22	Bacteriophage ϕIBB-PF7A loaded on sodium alginate-based films to prevent microbial meat spoilage. International Journal of Food Microbiology, 2019, 291, 121-127.	2.1	56
23	Biofilm Applications of Bacteriophages. , 2019, , 1-35.		1
24	Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocolloids, 2018, 81, 442-448.	5.6	180
25	Isolation of Bacteriophages for Clinically Relevant Bacteria. Methods in Molecular Biology, 2018, 1693, 23-30.	0.4	9
26	Control of <i>Salmonella</i> Enteritidis on food contact surfaces with bacteriophage PVP-SE2. Biofouling, 2018, 34, 753-768.	0.8	19
27	Assessment of Sep1virus interaction with stationary cultures by transcriptional and flow cytometry studies. FEMS Microbiology Ecology, 2018, 94, .	1.3	17
28	Chestnut Honey and Bacteriophage Application to Control Pseudomonas aeruginosa and Escherichia coli Biofilms: Evaluation in an ex vivo Wound Model. Frontiers in Microbiology, 2018, 9, 1725.	1.5	60
29	Phages Against Infectious Diseases. Topics in Biodiversity and Conservation, 2017, , 269-294.	0.3	3
30	Ability of phages to infect <i>Acinetobacter calcoaceticusâ€Acinetobacter baumannii</i> complex species through acquisition of different pectate lyase depolymerase domains. Environmental Microbiology, 2017, 19, 5060-5077.	1.8	81
31	Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Current Opinion in Microbiology, 2017, 39, 48-56.	2.3	194
32	A Genotypic Analysis of Five P. aeruginosa Strains after Biofilm Infection by Phages Targeting Different Cell Surface Receptors. Frontiers in Microbiology, 2017, 8, 1229.	1.5	41
33	Synergistic Antimicrobial Interaction between Honey and Phage against Escherichia coli Biofilms. Frontiers in Microbiology, 2017, 8, 2407.	1.5	64
34	Structural and Enzymatic Characterization of ABgp46, a Novel Phage Endolysin with Broad Anti-Gram-Negative Bacterial Activity. Frontiers in Microbiology, 2016, 7, 208.	1.5	118
35	Development of a Phage Cocktail to Control Proteus mirabilis Catheter-associated Urinary Tract Infections. Frontiers in Microbiology, 2016, 7, 1024.	1.5	100
36	The role of bacteriophages in periodontal health and disease. Future Microbiology, 2016, 11, 1359-1369.	1.0	31

#	Article	IF	CITATIONS
37	Genetically Engineered Phages: a Review of Advances over the Last Decade. Microbiology and Molecular Biology Reviews, 2016, 80, 523-543.	2.9	310
38	Discrimination of bacteriophage infected cells using locked nucleic acid fluorescent <i>in situ</i> hybridization (LNA-FISH). Biofouling, 2016, 32, 179-190.	0.8	29
39	Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Applied Microbiology and Biotechnology, 2016, 100, 2141-2151.	1.7	334
40	Unexploited opportunities for phage therapy. Frontiers in Pharmacology, 2015, 6, 180.	1.6	46
41	Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections. Journal of Virology, 2015, 89, 7449-7456.	1.5	142
42	Complete Genome Sequence of Pseudomonas aeruginosa Phage vB_PaeM_CEB_DP1. Genome Announcements, 2015, 3, .	0.8	6
43	Complete Genome Sequence of the Pseudomonas aeruginosa Bacteriophage philBB-PAA2. Genome Announcements, 2014, 2, .	0.8	7
44	A Thermostable Salmonella Phage Endolysin, Lys68, with Broad Bactericidal Properties against Gram-Negative Pathogens in Presence of Weak Acids. PLoS ONE, 2014, 9, e108376.	1.1	143
45	Isolation and characterization of a new Staphylococcus epidermidis broad-spectrum bacteriophage. Journal of General Virology, 2014, 95, 506-515.	1.3	59
46	Characterization of Staphylococcus epidermidis phage vB_SepS_SEP9 – a unique member of the Siphoviridae family. Research in Microbiology, 2014, 165, 679-685.	1.0	21
47	Bacteriophage Attack as an Anti-biofilm Strategy. Methods in Molecular Biology, 2014, 1147, 277-285.	0.4	15
48	Pseudomonas Bacteriophage Isolation and Production. Methods in Molecular Biology, 2014, 1149, 23-32.	0.4	8
49	Evaluation of the ability of <i>C. albicans</i> to form biofilm in the presence of phage-resistant phenotypes of <i>P. aeruginosa</i> . Biofouling, 2013, 29, 1169-1180.	0.8	7
50	Genome Sequence of the Broad-Host-Range Pseudomonas Phage Φ-S1. Journal of Virology, 2012, 86, 10239-10239.	1.5	11
51	Bacteriophages and Their Role in Food Safety. International Journal of Microbiology, 2012, 2012, 1-13.	0.9	210
52	The use of bacteriophages for P. aeruginosa biofilm control. , 2011, , .		1
53	Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Research in Microbiology, 2011, 162, 798-806.	1.0	130
54	Complete genome sequence of the lytic Pseudomonas fluorescens phage ϕIBB-PF7A. Virology Journal, 2011, 8, 142.	1.4	11

#	Article	IF	CITATIONS
55	Efficacy of a Broad Host Range Lytic Bacteriophage Against E. coli Adhered to Urothelium. Current Microbiology, 2011, 62, 1128-1132.	1.0	32
56	The Influence of P. fluorescens Cell Morphology on the Lytic Performance and Production of Phage ï•IBB-PF7A. Current Microbiology, 2011, 63, 347-353.	1.0	2
57	<i>Salmonella</i> Enteritidis bacteriophage candidates for phage therapy of poultry. Journal of Applied Microbiology, 2010, 108, 1175-1186.	1.4	61
58	Selection and Characterization of a Multivalent <i>Salmonella</i> Phage and Its Production in a Nonpathogenic <i>Escherichia coli</i> Strain. Applied and Environmental Microbiology, 2010, 76, 7338-7342.	1.4	42
59	Phage control of dual species biofilms of <i>Pseudomonas fluorescens</i> and <i>Staphylococcus lentus</i> . Biofouling, 2010, 26, 567-575.	0.8	93
60	The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiology, 2009, 9, 148.	1.3	87
61	Isolation and characterization of bacteriophages for avian pathogenic <i>E. coli</i> strains. Journal of Applied Microbiology, 2009, 106, 1919-1927.	1.4	52
62	Pseudomonas fluorescens biofilms subjected to phage philBB-PF7A. BMC Biotechnology, 2008, 8, 79.	1.7	107
63	Isolation and characterization of a T7-like lytic phage for Pseudomonas fluorescens. BMC Biotechnology, 2008, 8, 80.	1.7	94
64	Real-time quantification ofPseudomonas fluorescenscell removal from glass surfaces due to bacteriophage I•S1 application. Journal of Applied Microbiology, 2008, 105, 196-202.	1.4	16
65	Biofilm control with T7 phages. Journal of Biotechnology, 2007, 131, S252.	1.9	2
66	The effect of hydrodynamic conditions on the phenotype of <i>Pseudomonas fluorescens</i> biofilms. Biofouling, 2007, 23, 249-258.	0.8	103
67	Effects of Growth in the Presence of Subinhibitory Concentrations of Dicloxacillin on Staphylococcus epidermidis and Staphylococcus haemolyticus Biofilms. Applied and Environmental Microbiology, 2005, 71, 8677-8682.	1.4	67
68	Pseudomonas fluorescensinfection by bacteriophage ΦS1: the influence of temperature, host growth phase and media. FEMS Microbiology Letters, 2004, 241, 13-20.	0.7	84
69	Bacteriophage Φ S1 Infection ofPseudomonas fluorescensPlanktonic CellsversusBiofilms. Biofouling, 2004, 20, 133-138.	0.8	117
70	Extraction of exopolymers from biofilms: the protective effect of glutaraldehyde. Water Science and Technology, 2003, 47, 175-179.	1.2	63
71	Extraction of exopolymers from biofilms: the protective effect of glutaraldehyde. Water Science and Technology, 2003, 47, 175-9.	1.2	5