Ewa Olewnik-Kruszkowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6418433/publications.pdf

Version: 2024-02-01

43 papers

822 citations

471371 17 h-index 27 g-index

44 all docs

44 docs citations

times ranked

44

763 citing authors

#	Article	IF	CITATIONS
1	Comparative Study of Gelatin Hydrogels Modified by Various Cross-Linking Agents. Materials, 2021, 14, 396.	1.3	90
2	Physicochemical and storage properties of chitosan-based films plasticized with deep eutectic solvent. Food Hydrocolloids, 2020, 108, 106007.	5.6	85
3	Antibacterial Films Based on PVA and PVA–Chitosan Modified with Poly(Hexamethylene Guanidine). Polymers, 2019, 11, 2093.	2.0	65
4	Synthesis and structural study of copolymers of l-lactic acid and bis(2-hydroxyethyl terephthalate). European Polymer Journal, 2007, 43, 1009-1019.	2.6	61
5	The role of a deep eutectic solvent in changes of physicochemical and antioxidative properties of chitosan-based films. Carbohydrate Polymers, 2021, 255, 117527.	5.1	54
6	Degradation of polylactide composites under UV irradiation at 254 nm. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 311, 144-153.	2.0	41
7	Effect of chemical crosslinking on properties of chitosan-montmorillonite composites. Polymer Testing, 2019, 77, 105872.	2.3	38
8	The effect of primers on adhesive properties and strength of adhesive joints made with polyurethane adhesives. Journal of Adhesion Science and Technology, 2017, 31, 327-344.	1.4	26
9	Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites. Polymer Degradation and Stability, 2016, 129, 87-95.	2.7	25
10	Investigation of selected properties of adhesive compositions based on epoxy resins. International Journal of Adhesion and Adhesives, 2019, 92, 23-36.	1.4	22
11	Antibacterial Films Based on Polylactide with the Addition of Quercetin and Poly(Ethylene Glycol). Materials, 2021, 14, 1643.	1.3	21
12	Effect of UV irradiation on thermal properties of nanocomposites based on polylactide. Journal of Thermal Analysis and Calorimetry, 2015, 119, 219-228.	2.0	19
13	Influence of Tea Tree Essential Oil and Poly(ethylene glycol) on Antibacterial and Physicochemical Properties of Polylactide-Based Films. Materials, 2020, 13, 4953.	1.3	19
14	Biodegradation of polylactide-based composites with an addition of a compatibilizing agent in different environments. International Biodeterioration and Biodegradation, 2020, 147, 104840.	1.9	18
15	The Physicochemical and Antibacterial Properties of Chitosan-Based Materials Modified with Phenolic Acids Irradiated by UVC Light. International Journal of Molecular Sciences, 2021, 22, 6472.	1.8	18
16	Effect of the compatibilizing agent on the structure, mechanical and thermal properties of polylactide filled with modified and unmodified montmorillonite. Polymer Composites, 2014, 35, 1330-1337.	2.3	17
17	Effect of poly($\hat{l}\mu$ -caprolactone) as plasticizer on the properties of composites based on polylactide during hydrolytic degradation. Reactive and Functional Polymers, 2016, 103, 99-107.	2.0	17
18	Effect of ozone exposure on thermal and structural properties of polylactide based composites. Polymer Testing, 2016, 56, 299-307.	2.3	16

#	Article	IF	Citations
19	Concrete Strengthening by Introducing Polymer-Based Additives into the Cement Matrix—A Mini Review. Materials, 2021, 14, 6071.	1.3	16
20	Is Dialdehyde Chitosan a Good Substance to Modify Physicochemical Properties of Biopolymeric Materials?. International Journal of Molecular Sciences, 2021, 22, 3391.	1.8	12
21	Influence of the compatibilizing agent on permeability and contact angle of composites based on polylactide. Polymer Composites, 2015, 36, 17-25.	2.3	11
22	Enzymatic degradation of bacteriostatic polylactide composites. International Biodeterioration and Biodegradation, 2019, 142, 103-108.	1.9	11
23	Examining the Impact of Squaric Acid as a Crosslinking Agent on the Properties of Chitosan-Based Films. International Journal of Molecular Sciences, 2021, 22, 3329.	1.8	11
24	The Role of Birch Tar in Changing the Physicochemical and Biocidal Properties of Polylactide-Based Films. International Journal of Molecular Sciences, 2022, 23, 268.	1.8	10
25	Polylactide-Based Films with the Addition of Poly(ethylene glycol) and Extract of Propolis—Physico-Chemical and Storage Properties. Foods, 2022, 11, 1488.	1.9	9
26	Effect of compatibilizing agent on the properties of polylactide and polylactide based composite during ozone exposure. Polymer Testing, 2017, 60, 283-292.	2.3	8
27	Conducting polymer: silver interface, morphology and properties. Journal of Materials Science: Materials in Electronics, 2017, 28, 19071-19080.	1.1	8
28	Physicochemical and barrier properties of polylactide films including antimicrobial additives. Materials Chemistry and Physics, 2019, 230, 299-307.	2.0	8
29	Comparative Study of Structural Changes of Polylactide and Poly(ethylene terephthalate) in the Presence of Trichoderma viride. International Journal of Molecular Sciences, 2021, 22, 3491.	1.8	8
30	The Characterization of Scaffolds Based on Dialdehyde Chitosan/Hyaluronic Acid. Materials, 2021, 14, 4993.	1.3	8
31	Effect of Diatomaceous Biosilica and Talc on the Properties of Dielectric Elastomer Based Composites. Energies, 2020, 13, 5828.	1.6	7
32	EMULSION POLYMERIZATION OF THIOPHENE $\hat{a} \in \text{``THE NEW WAY OF CONDUCTING POLYMERS SYNTHESIS.}$ Advances in Science and Technology Research Journal, 0, 9, 118-122.	0.4	7
33	Stability of polylactide as potential packaging material in solutions of selected surfactants used in cosmetic formulae. Polymer Testing, 2019, 74, 225-234.	2.3	6
34	Polylactide Films with the Addition of Olive Leaf Extractâ€"Physico-Chemical Characterization. Materials, 2021, 14, 7623.	1.3	6
35	Influence of ozone treatment on structure and thermal properties of bis-2-hydroxyethyl terephthalate-based copolymers. Journal of Thermal Analysis and Calorimetry, 2013, 112, 697-702.	2.0	4
36	Chemically crosslinked polyethylene foams of limited flammability. Polimery, 2015, 60, 283-285.	0.4	4

#	Article	lF	CITATIONS
37	Enzymatic degradation of biostatic materials based on polylactide. Ecological Questions, 2018, 29, 1.	0.1	3
38	Comparison of How Graphite and Shungite Affect Thermal, Mechanical, and Dielectric Properties of Dielectric Elastomer-Based Composites. Energies, 2022, 15, 152.	1.6	3
39	Scaffolds Loaded with Dialdehyde Chitosan and Collagenâ€"Their Physico-Chemical Properties and Biological Assessment. Polymers, 2022, 14, 1818.	2.0	3
40	Growth of selected fungi on biodegradable films. Ecological Questions, 2018, 29, 1.	0.1	2
41	Effect of Polymer Additives on the Microstructure and Mechanical Properties of Self-Leveling Rubberised Concrete. Materials, 2022, 15, 249.	1.3	2
42	Polythiophene with ionophore substituent in the side chain. Journal of Applied Polymer Science, 2017, 134, .	1.3	1
43	The Role of Deep Eutectic Solvents and Flavonoids in Chitosan Films Properties. , 0, , .		0