Stephanie Cabantous

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6418395/publications.pdf

Version: 2024-02-01

37 papers 4,038 citations

361045 20 h-index 37 g-index

40 all docs

40 docs citations

40 times ranked

6266 citing authors

#	Article	IF	CITATIONS
1	Solution structure of the type I polyketide synthase Pks13 from Mycobacterium tuberculosis. BMC Biology, 2022, 20, .	1.7	5
2	Insights into animal septins using recombinant human septin octamers with distinct SEPT9 isoforms. Journal of Cell Science, 2021, 134, .	1.2	19
3	$\hat{V^{13}}$ 9 $\hat{V^{12}}$ T Cells Activation Through Phosphoantigens Can Be Impaired by a RHOB Rerouting in Lung Cancer. Frontiers in Immunology, 2020, 11, 1396.	2.2	3
4	Modulation of innate immune signaling by a <i>Coxiella burnetii</i> eukaryotic-like effector protein. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13708-13718.	3.3	26
5	Cytoplasmic p27 ^{Kip1} promotes tumorigenesis via suppression of RhoB activity. Journal of Pathology, 2019, 247, 60-71.	2.1	8
6	Development and Applications of Superfolder and Split Fluorescent Protein Detection Systems in Biology. International Journal of Molecular Sciences, 2019, 20, 3479.	1.8	44
7	High-Throughput Isolation of Soluble Protein Domains Using a Bipartite Split-GFP Complementation System. Methods in Molecular Biology, 2019, 2025, 321-333.	0.4	1
8	High-Throughput Protein–Protein Interaction Assays Using Tripartite Split-GFP Complementation. Methods in Molecular Biology, 2019, 2025, 423-437.	0.4	6
9	A Targeted Protein Degradation Cell-Based Screening for Nanobodies Selective toward the Cellular RHOB GTP-Bound Conformation. Cell Chemical Biology, 2019, 26, 1544-1558.e6.	2.5	32
10	Hybrid QM/MM vs Pure MM Molecular Dynamics for Evaluating Water Distribution within p21 ^{N-ras} and the Resulting GTP Electronic Density. Journal of Physical Chemistry B, 2019, 123, 3935-3944.	1.2	3
11	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	15
12	High-content tripartite split-GFP cell-based assays to screen for modulators of small GTPase activation. Journal of Cell Science, 2018, 131, .	1.2	25
13	A muscleâ€specific <scp>MuRF1â€E2</scp> network requires stabilization of <scp>MuRF1â€E2</scp> complexes by telethonin, a newly identified substrate. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 129-145.	2.9	36
14	Water Distribution within Wild-Type NRas Protein and Q61 Mutants during Unrestrained QM/MM Dynamics. Biophysical Journal, 2018, 115, 1417-1430.	0.2	10
15	Detection of soluble co-factor dependent protein expression in vivo : Application to the 4′-phosphopantetheinyl transferase PptT from Mycobacterium tuberculosis. Journal of Structural Biology, 2013, 183, 320-328.	1.3	10
16	In vivo interactions of TTDA mutant proteins within TFIIH. Journal of Cell Science, 2013, 126, 3278-83.	1.2	15
17	A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association. Scientific Reports, 2013, 3, 2854.	1.6	190
18	4′-Phosphopantetheinyl Transferase PptT, a New Drug Target Required for Mycobacterium tuberculosis Growth and Persistence In Vivo. PLoS Pathogens, 2012, 8, e1003097.	2.1	63

#	Article	IF	CITATIONS
19	The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochemical and Biophysical Research Communications, 2012, 417, 299-304.	1.0	49
20	Disulfide Bonds within the C2 Domain of RAGE Play Key Roles in Its Dimerization and Biogenesis. PLoS ONE, 2012, 7, e50736.	1.1	32
21	Experimental mapping of soluble protein domains using a hierarchical approach. Nucleic Acids Research, 2011, 39, e125-e125.	6.5	29
22	A high-throughput immobilized bead screen for stable proteins and multi-protein complexes. Protein Engineering, Design and Selection, 2011, 24, 565-578.	1.0	12
23	One-step split GFP staining for sensitive protein detection and localization in mammalian cells. BioTechniques, 2010, 49, 727-736.	0.8	53
24	New Molecular Reporters for Rapid Protein Folding Assays. PLoS ONE, 2008, 3, e2387.	1.1	40
25	Split-GFP as a tool for finding soluble protein domains. Acta Crystallographica Section A: Foundations and Advances, 2007, 63, s12-s13.	0.3	1
26	Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 2006, 24, 79-88.	9.4	1,949
27	In vivo and in vitro protein solubility assays using split GFP. Nature Methods, 2006, 3, 845-854.	9.0	239
28	A Toolbox of GFP Technologies. Imaging & Microscopy, 2006, 8, 60-61.	0.1	0
29	Structural and functional features of an NDP kinase from the hyperthermophile crenarchaeonPyrobaculum aerophilum. Protein Science, 2005, 14, 2562-2573.	3.1	12
30	Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nature Biotechnology, 2005, 23, 102-107.	9.4	781
31	Recent Advances in GFP Folding Reporter and Split-GFP Solubility Reporter Technologies. Application to Improving the Folding and Solubility of Recalcitrant Proteins from Mycobacterium tuberculosis. Journal of Structural and Functional Genomics, 2005, 6, 113-119.	1.2	65
32	Crystallographic and Biochemical Studies of DivK Reveal Novel Features of an Essential Response Regulator in Caulobacter crescentus. Journal of Biological Chemistry, 2002, 277, 42003-42010.	1.6	25
33	Characterization and crystallization of DivK, an essential response regulator for cell division and differentiation inCaulobacter crescentus. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1249-1251.	2.5	6
34	Further insights into the mechanism of function of the response regulator CheY from crystallographic studies of the CheYâ€"CheA124â€"257complex. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 44-51.	2.5	22
35	The molecular puzzle of two-component signaling cascades. Microbes and Infection, 2001, 3, 417-424.	1.0	39
36	X-ray Structure of the Asn276Asp Variant of theEscherichia coliTEM-1 β-Lactamase: Direct Observation of Electrostatic Modulation in Resistance to Inactivation by Clavulanic Acidâ€,‡. Biochemistry, 1999, 38, 9570-9576.	1.2	69

3

#	Article	IF	CITATIONS
37	X-ray Analysis of the NMC-A \hat{l}^2 -Lactamase at 1.64- \hat{A} Resolution, a Class A Carbapenemase with Broad Substrate Specificity. Journal of Biological Chemistry, 1998, 273, 26714-26721.	1.6	79