Veronica Eliasson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/64183/publications.pdf Version: 2024-02-01

VERONICA FLIASSON

#	Article	IF	CITATIONS
1	Moisture effect investigation on the dynamic fracture behavior of unidirectional and woven carbon fiber/epoxy materials. , 2022, , 237-254.		0
2	lmage Processing and Edge Detection Techniques to Quantify Shock Wave Dynamics Experiments. Experimental Techniques, 2021, 45, 483-495.	1.5	11
3	The Effect of Moisture Intake on the Mode-II Dynamic Fracture Behavior of Carbon Fiber/Epoxy Composites. Journal of Dynamic Behavior of Materials, 2021, 7, 21-33.	1.7	5
4	Design of a Multiple Exploding Wire Setup to Study Shock Wave Dynamics. Experimental Techniques, 2020, 44, 241-248.	1.5	5
5	Blast wave interaction with structures: an application of exploding wire experiments. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2020, 3, 337-347.	2.1	4
6	Experimental and Numerical Study of Blast-Structure Interaction. , 2020, , .		2
7	Shock Waves and Blast Waves. Shock Wave and High Pressure Phenomena, 2019, , 9-34.	0.1	2
8	Shock wave attenuation using rigid obstacles with large- and small-scale geometrical features. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2019, 2, 269-279.	2.1	6
9	Numerical investigation of shock wave attenuation in channels using water obstacles. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2019, 2, 159-173.	2.1	1
10	Shock Focusing Phenomena. Shock Wave and High Pressure Phenomena, 2019, , .	0.1	11
11	Traumatic Brain Injury: Models and Mechanisms of Traumatic Brain Injury. , 2019, , 283-313.		Ο
12	Glial Model for Traumatic Brain Injury: Network Strain Field and Inflammation Induced by Repeated Mechanical Impacts In Vitro. Experimental Mechanics, 2018, 58, 125-135.	2.0	6
13	Shock Wave Mitigation Using Liquids. Springer Transactions in Civil and Environmental Engineering, 2018, , 301-320.	0.4	Ο
14	Mechanical Properties of an Feâ€Based SAM2×5â€630 Metallic Glass Matrix Composite with Tungsten Particle Additions. Advanced Engineering Materials, 2018, 20, 1800023.	3.5	9
15	Shock wave interactions with liquid sheets. Experiments in Fluids, 2017, 58, 1.	2.4	7
16	Numerical and experimental investigation of oblique shock wave reflection off a water wedge. Journal of Fluid Mechanics, 2017, 826, 732-758.	3.4	13
17	Bulk Mechanical Properties Testing of Metallic Marginal Glass Formers. Journal of Metallurgy, 2016, 2016, 1-8.	1.1	6
18	Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves. Computer Physics Communications, 2016, 207, 186-192.	7.5	8

VERONICA ELIASSON

#	Article	IF	CITATIONS
19	Experimental Investigation of Dynamic Fracture Initiation in PMMA Submerged in Water. Journal of Dynamic Behavior of Materials, 2016, 2, 391-398.	1.7	5
20	Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites. Scientific Reports, 2016, 6, 22568.	3.3	27
21	Quantitative Pressure Measurement of Shock Waves in Water Using a Schlieren-Based Visualization Technique. Experimental Techniques, 2016, 40, 323-331.	1.5	4
22	Effect of Water Content on Dynamic Fracture Initiation of Vinyl Ester. Experimental Mechanics, 2016, 56, 637-644.	2.0	7
23	Evaluation of the effect of water content on the stress optical coefficient in PMMA. Polymer Testing, 2016, 50, 119-124.	4.8	9
24	Quantitative Visualization of Dynamic Material Behavior. Experimental Mechanics, 2016, 56, 1-2.	2.0	20
25	Influence of Water Uptake on Dynamic Fracture Behavior of Poly(Methyl Methacrylate). Experimental Mechanics, 2016, 56, 59-68.	2.0	8
26	Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves. Shock Waves, 2016, 26, 287-297.	1.9	10
27	Effect of Loading Rate on Dynamic Fracture Morphology of a Zr-Based Bulk Metallic Glass. Materials Transactions, 2015, 56, 840-843.	1.2	2
28	Shock Wave Attenuation Using Foam Obstacles: Does Geometry Matter?. Aerospace, 2015, 2, 353-375.	2.2	13
29	Numerical Study of Shock Wave Attenuation in Two-Dimensional Ducts Using Solid Obstacles: How to Utilize Shock Focusing Techniques to Attenuate Shock Waves. Aerospace, 2015, 2, 203-221.	2.2	12
30	Creep in amorphous metals. Journal of Materials Research and Technology, 2015, 4, 100-107.	5.8	23
31	Investigation of shock wave focusing in water in a logarithmic spiral duct, Part 1: Weak coupling. Ocean Engineering, 2015, 102, 174-184.	4.3	7
32	Investigation of shock wave focusing in water in a logarithmic spiral duct, Part 2: Strong coupling. Ocean Engineering, 2015, 102, 185-196.	4.3	3
33	HAMr: A Mechanical Impactor for Repeated Dynamic Loading of In vitro Neuronal Networks. Experimental Mechanics, 2015, 55, 1441-1449.	2.0	5
34	Quantitative Pressure Measurement of Shock Waves in Water Using a Schlieren-Based Visualization Technique. Experimental Techniques, 2013, 40, n/a-n/a.	1.5	6
35	In Situ Optical Investigations of Hypervelocity Impact Induced Dynamic Fracture. Experimental Mechanics, 2012, 52, 161-170.	2.0	10
36	Shock wave focusing in water inside convergent structures. International Journal of Multiphysics, 2012, 6, 267-282.	0.1	15

VERONICA ELIASSON

#	Article	IF	CITATIONS
37	Experimental investigation of converging shocks in water with various confinement materials. Shock Waves, 2010, 20, 395-408.	1.9	13
38	On cylindrically converging shock waves shaped by obstacles. Physica D: Nonlinear Phenomena, 2008, 237, 2203-2209.	2.8	5
39	Light emission during shock wave focusing in air and argon. Physics of Fluids, 2007, 19, 106106.	4.0	16
40	Controlling the form of strong converging shocks by means of disturbances. Shock Waves, 2007, 17, 29-42.	1.9	30
41	Regular versus Mach reflection for converging polygonal shocks. Shock Waves, 2007, 17, 43-50.	1.9	14
42	Focusing of Strong Shocks in an Annular Shock Tube. Shock Waves, 2006, 15, 205-217.	1.9	26
43	Shaping converging shock waves by means of obstacles. Journal of Visualization, 2006, 9, 240-240.	1.8	3
44	Mode-II Fracture Response of PMMA Under Dynamic Loading Conditions. Journal of Dynamic Behavior of Materials, 0, , 1.	1.7	3