
Ioanna Zergioti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/641793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser printing of Au nanoparticles with sub-micron resolution for the fabrication of monochromatic reflectors on stretchable substrates. Optics and Laser Technology, 2021, 135, 106660.	4.6	9
2	Digital printing and functionalization of Surfaces for Biosensing Applications. IEEE Sensors Journal, 2021, , 1-1.	4.7	0
3	A Miniature Bio-Photonics Companion Diagnostics Platform for Reliable Cancer Treatment Monitoring in Blood Fluids. Sensors, 2021, 21, 2230.	3.8	8
4	Eco-Friendly Lead-Free Solder Paste Printing via Laser-Induced Forward Transfer for the Assembly of Ultra-Fine Pitch Electronic Components. Materials, 2021, 14, 3353.	2.9	6
5	A direct transfer solution for digital laser printing of CVD graphene. 2D Materials, 2021, 8, 045017.	4.4	7
6	Laser-Induced Forward Transfer (LIFT) Technique as an Alternative for Assembly and Packaging of Electronic Components. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-8.	2.9	7
7	Parametric Study of Jet/Droplet Formation Process during LIFT Printing of Living Cell-Laden Bioink. Micromachines, 2021, 12, 1408.	2.9	5
8	The effect of electromigration on the lifetime and performance of flexible interconnections fabricated by laser printing and sintering. Applied Surface Science, 2020, 506, 144968.	6.1	15
9	Laser-induced backward transfer of monolayer graphene. Applied Surface Science, 2020, 533, 147488.	6.1	14
10	Facile and Low-Cost SPE Modification Towards Ultra-Sensitive Organophosphorus and Carbamate Pesticide Detection in Olive Oil. Molecules, 2020, 25, 4988.	3.8	16
11	Laser Induced Backward Transfer of ultra-thin metal structures. Applied Surface Science, 2020, 512, 145730.	6.1	6
12	Laserâ€Induced Forward Transfer of High Viscous, Nonâ€Newtonian Silver Nanoparticle Inks: Jet Dynamics and Temporal Evolution of the Printed Droplet Study. Advanced Engineering Materials, 2019, 21, 1900605.	3.5	20
13	Bioprinting for Liver Transplantation. Bioengineering, 2019, 6, 95.	3.5	45
14	Erratum to "Comparative Assessment of Affinity-Based Techniques for Oriented Antibody Immobilization towards Immunosensor Performance Optimization― Journal of Sensors, 2019, 2019, 1-1.	1.1	0
15	Comparative Assessment of Affinity-Based Techniques for Oriented Antibody Immobilization towards Immunosensor Performance Optimization. Journal of Sensors, 2019, 2019, 1-10.	1.1	8
16	Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies. Applied Surface Science, 2019, 465, 136-142.	6.1	37
17	Apta- and Immuno-Sensors Performance Optimization: A Comparative Study of Surface Functionalization Techniques. Proceedings (mdpi), 2018, 2, .	0.2	0
18	Phosphate Modified Screen Printed Electrodes by LIFT Treatment for Glucose Detection. Biosensors, 2018. 8. 91.	4.7	5

IOANNA ZERGIOTI

#	Article	IF	CITATIONS
19	Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates. Materials, 2018, 11, 2142.	2.9	46
20	<i>In-situ</i> sequential laser transfer and laser reduction of graphene oxide films. Applied Physics Letters, 2018, 112, .	3.3	13
21	Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes. Materials, 2018, 11, 1036.	2.9	18
22	Onâ€Demand Laser Printing of Picoliterâ€Sized, Highly Viscous, Adhesive Fluids: Beyond Inkjet Limitations. Advanced Materials Interfaces, 2018, 5, 1800440.	3.7	19
23	Direct Creation of Biopatterns via a Combination of Laser-Based Techniques and Click Chemistry. Langmuir, 2017, 33, 848-853.	3.5	14
24	Heavy metal ion detection using DNAzyme-modified platinum nanoparticle networks. Sensors and Actuators B: Chemical, 2017, 239, 962-969.	7.8	25
25	Laser printing and immobilization of biomolecules for optical sensors applications. , 2017, , .		0
26	Direct laser printing of graphene oxide for resistive chemosensors. Optics and Laser Technology, 2016, 82, 163-169.	4.6	29
27	Label-free DNA biosensor based on resistance change of platinum nanoparticles assemblies. Biosensors and Bioelectronics, 2016, 81, 388-394.	10.1	18
28	Laser direct writing of 40 GHz RF components on flexible substrates. Optics and Laser Technology, 2016, 79, 108-114.	4.6	9
29	Superamphiphobic Polymeric Surfaces Sustaining Ultrahigh Impact Pressures of Aqueous High―and Low‣urfaceâ€Tension Mixtures, Tested with Laserâ€Induced Forward Transfer of Drops. Advanced Materials, 2015, 27, 2231-2235.	21.0	78
30	A study on the pulsed laser printing of liquid-phase exfoliated graphene for organic electronics. Applied Physics A: Materials Science and Processing, 2014, 117, 301-306.	2.3	15
31	Time-resolved imaging and immobilization study of biomaterials on hydrophobic and superhydrophobic surfaces by means of laser-induced forward transfer. Laser Physics Letters, 2014, 11, 105603.	1.4	6
32	A polyphenol biosensor realized by laser printing technology. Sensors and Actuators B: Chemical, 2014, 193, 301-305.	7.8	29
33	Laser induced forward transfer of Ag nanoparticles ink deposition and characterization. Applied Surface Science, 2014, 297, 40-44.	6.1	68
34	Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality. Microfluidics and Nanofluidics, 2014, 16, 493-500.	2.2	79
35	Biosensors by means of the laser induced forward transfer technique. Applied Surface Science, 2013, 278, 250-254.	6.1	16
36	Direct laser printing of thin-film polyaniline devices. Applied Physics A: Materials Science and Processing, 2013, 110, 623-628.	2.3	9

IOANNA ZERGIOTI

#	Article	IF	CITATIONS
37	Sticking of droplets on slippery superhydrophobic surfaces by laser induced forward transfer. Applied Physics Letters, 2013, 103, 024104.	3.3	18
38	A time-resolved shadowgraphic study of laser transfer of silver nanoparticle ink. Applied Surface Science, 2013, 278, 71-76.	6.1	25
39	Laser printing and characterization of semiconducting polymers for organic electronics. Applied Physics A: Materials Science and Processing, 2013, 110, 559-563.	2.3	20
40	Laser Printing of Organic Electronics and Sensors. Journal of Laser Micro Nanoengineering, 2013, 8, 30-34.	0.1	16
41	Surface functionalization studies and direct laser printing of oligonucleotides toward the fabrication of a micromembrane DNA capacitive biosensor. Sensors and Actuators B: Chemical, 2012, 175, 123-131.	7.8	25
42	A photosynthetic biosensor with enhanced electron transfer generation realized by laser printing technology. Analytical and Bioanalytical Chemistry, 2012, 402, 3237-3244.	3.7	32
43	Laser printing of polythiophene for organic electronics. Applied Surface Science, 2011, 257, 5148-5151.	6.1	15
44	ZnO nanoparticles produced by novel reactive physical deposition process. Applied Surface Science, 2011, 257, 5366-5369.	6.1	11
45	Direct laser immobilization of photosynthetic material on screen printed electrodes for amperometric biosensor. Applied Physics Letters, 2011, 98, .	3.3	27
46	Laser studies of metallic artworks. Applied Physics A: Materials Science and Processing, 2010, 101, 349-355.	2.3	9
47	Detection of DNA mutations using a capacitive micro-membrane array. Biosensors and Bioelectronics, 2010, 26, 1588-1592.	10.1	19
48	Polymer/carbon nanotube composite patterns via laser induced forward transfer. Applied Physics Letters, 2010, 96, .	3.3	48
49	Detection of the biotin–streptavidin interaction by exploiting surface stress changes on ultrathin Si membranes. Microelectronic Engineering, 2009, 86, 1495-1498.	2.4	16
50	Liquid phase direct laser printing of polymers for chemical sensing applications. Applied Physics Letters, 2008, 93, .	3.3	67
51	Ballistic laser-assisted solid transfer (BLAST) from a thin film precursor. Optics Express, 2008, 16, 3249.	3.4	37
52	Laser annealing of Al implanted silicon carbide: Structural and optical characterization. Applied Surface Science, 2007, 253, 7912-7916.	6.1	17
53	Structural modifications in fused silica induced by ultraviolet fs laser filaments. Applied Surface Science, 2007, 253, 7865-7868.	6.1	11
54	Ultraviolet laser microstructuring of silicon and the effect of laser pulse duration on the surface morphology. Applied Surface Science, 2006, 252, 4462-4466.	6.1	29

IOANNA ZERGIOTI

#	Article	IF	CITATIONS
55	Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer. Applied Physics Letters, 2006, 89, 193107.	3.3	135
56	Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica. Applied Physics A: Materials Science and Processing, 2005, 81, 241-244.	2.3	18
57	Growth of polycrystalline La0.5Sr0.5CoO3 films by femtosecond pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2004, 79, 911-914.	2.3	6
58	Microstructuring of lithium niobate single crystals using pulsed UV laser modification of etching characteristics. Optical Materials, 2002, 20, 125-134.	3.6	17
59	Laser-Induced Fluorescence in Artwork Diagnostics: An Application in Pigment Analysis. Applied Spectroscopy, 1996, 50, 1331-1334.	2.2	88
60	Indium Tin Oxide-Free Inverted Organic Photovoltaics Using Laser-Induced Forward Transfer Silver Nanoparticle Embedded Metal Grids. ACS Applied Electronic Materials, 0, , .	4.3	10