
Ines Lezcano-Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6416425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in automotive catalysis for NO _x emission control by small-pore microporous materials. Chemical Society Reviews, 2015, 44, 7371-7405.	38.1	729
2	Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NO _{<i>x</i>} . ACS Catalysis, 2013, 3, 413-427.	11.2	301
3	Determining the storage, availability and reactivity of NH ₃ within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems. Physical Chemistry Chemical Physics, 2014, 16, 1639-1650.	2.8	181
4	Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSMâ€5 as Revealed by Operando Xâ€Ray Methods. Angewandte Chemie - International Edition, 2016, 55, 5215-5219.	13.8	133
5	Changing active sites in Cu–CHA catalysts: deNOx selectivity as a function of the preparation method. Microporous and Mesoporous Materials, 2013, 166, 144-152.	4.4	131
6	Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems. Applied Catalysis B: Environmental, 2014, 154-155, 339-349.	20.2	123
7	Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species during Methanol to Olefins Conversion over H-SSZ-13. ACS Catalysis, 2015, 5, 992-1003.	11.2	112
8	Correlation between Cu ion migration behaviour and deNO _x activity in Cu-SSZ-13 for the standard NH ₃ -SCR reaction. Chemical Communications, 2016, 52, 6170-6173.	4.1	59
9	Real-Time Scattering-Contrast Imaging of a Supported Cobalt-Based Catalyst Body during Activation and Fischer–Tropsch Synthesis Revealing Spatial Dependence of Particle Size and Phase on Catalytic Properties. ACS Catalysis, 2017, 7, 2284-2293.	11.2	54
10	Detection of key transient Cu intermediates in SSZ-13 during NH ₃ -SCR deNO _x by modulation excitation IR spectroscopy. Chemical Science, 2020, 11, 447-455.	7.4	52
11	Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts. Nature Materials, 2020, 19, 1081-1087.	27.5	52
12	Enhanced activity of desilicated Cu-SSZ-13 for the selective catalytic reduction of NO _x and its comparison with steamed Cu-SSZ-13. Catalysis Science and Technology, 2017, 7, 3851-3862.	4.1	51
13	Determination of Molybdenum Species Evolution during Nonâ€Oxidative Dehydroaromatization of Methane and its Implications for Catalytic Performance. ChemCatChem, 2019, 11, 473-480.	3.7	48
14	Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSMâ€5 as Revealed by Operando Xâ€Ray Methods. Angewandte Chemie, 2016, 128, 5301-5305.	2.0	37
15	Determination of the Nature of the Cu Coordination Complexes Formed in the Presence of NO and NH ₃ within SSZ-13. Journal of Physical Chemistry C, 2015, 119, 24393-24403.	3.1	36
16	NMR spectroscopy and theoretical calculations demonstrate the nature and location of active sites for the Beckmann rearrangement reaction in microporous materials. Journal of Catalysis, 2007, 249, 116-119.	6.2	33
17	Operando HERFD-XANES/XES studies reveal differences in the activity of Fe-species in MFI and CHA structures for the standard selective catalytic reduction of NO with NH3. Applied Catalysis A: General, 2019, 570, 283-291.	4.3	30
18	Implications of the Molybdenum Coordination Environment in MFI Zeolites on Methane Dehydroaromatisation Performance. ChemCatChem, 2020, 12, 294-304.	3.7	29

#	Article	IF	CITATIONS
19	Development and characterization of thermally stable supported V–W–TiO ₂ catalysts for mobile NH ₃ –SCR applications. Journal of Lithic Studies, 2015, 1, 25-34.	0.5	25
20	Identification of Active Surface Species for Friedel–Crafts Acylation and Koch Carbonylation Reactions by in situ Solid‧tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 5138-5141.	13.8	24
21	Modelling active sites for the Beckmann rearrangement reaction in boron-containing zeolites and their interaction with probe molecules. Physical Chemistry Chemical Physics, 2010, 12, 6396.	2.8	23
22	Investigation on the Beckmann rearrangement reaction catalyzed by porous solids: MAS NMR and theoretical calculations. Solid State Nuclear Magnetic Resonance, 2009, 35, 120-129.	2.3	20
23	Study of the Beckmann rearrangement of acetophenone oxime over porous solids by means of solid state NMR spectroscopy. Physical Chemistry Chemical Physics, 2009, 11, 5134.	2.8	19
24	Operando Spectroscopic Studies of Cu–SSZ-13 for NH3–SCR deNOx Investigates the Role of NH3 in Observed Cu(II) Reduction at High NO Conversions. Topics in Catalysis, 2018, 61, 175-182.	2.8	19
25	Structureâ€Activity Relationships in Highly Active Platinumâ€Tin MFlâ€type Zeolite Catalysts for Propane Dehydrogenation. ChemCatChem, 2022, 14, .	3.7	16
26	In situ multinuclear solid-state NMR spectroscopy study of Beckmann rearrangement of cyclododecanone oxime in ionic liquids: The nature of catalytic sites. Journal of Catalysis, 2010, 275, 78-83.	6.2	12
27	Multimodal Imaging of Autofluorescent Sites Reveals Varied Chemical Speciation in SSZâ€13 Crystals. Angewandte Chemie - International Edition, 2021, 60, 5125-5131.	13.8	12
28	Resolving the Effect of Oxygen Vacancies on Co Nanostructures Using Soft XAS/X-PEEM. ACS Catalysis, 2022, 12, 9125-9134.	11.2	9
29	Flexibility of the imidazolium based ionic liquids/water system for the synthesis of siliceous 10-ring containing microporous frameworks. Microporous and Mesoporous Materials, 2017, 240, 117-122.	4.4	4
30	Understanding the Deactivation Phenomena of Small-Pore Mo/H-SSZ-13 during Methane Dehydroaromatisation. Molecules, 2020, 25, 5048.	3.8	4
31	Multimodal Imaging of Autofluorescent Sites Reveals Varied Chemical Speciation in SSZâ€∎3 Crystals. Angewandte Chemie, 2021, 133, 5185-5191.	2.0	2
32	Rücktitelbild: Molybdenum Speciation and its Impact on Catalytic Activity during Methane Dehydroaromatization in Zeolite ZSMâ€5 as Revealed by Operando Xâ€Ray Methods (Angew. Chem. 17/2016). Angewandte Chemie, 2016, 128, 5434-5434.	2.0	0