

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6416417/publications.pdf Version: 2024-02-01

⊼1//čÅ+\ ŕ+'

#	Article	IF	CITATIONS
1	Seasonal variations in temperature sensitivity of soil respiration in a larch forest in the Northern Daxing'an Mountains in Northeast China. Journal of Forestry Research, 2022, 33, 1061-1070.	1.7	9
2	Synergetic variations of active layer soil water and salt in a permafrost-affected meadow in the headwater area of the Yellow River, northeastern Qinghai–Tibet plateau. International Soil and Water Conservation Research, 2022, 10, 284-292.	3.0	7
3	Climate warming over 1961–2019 and impacts on permafrost zonation in Northeast China. Journal of Forestry Research, 2022, 33, 767-788.	1.7	22
4	Effects of fire history on thermal regimes of permafrost in the northern Da Xing'anling Mountains, NE China. Geoderma, 2022, 410, 115670.	2.3	9
5	Thermal Recovery of Backfilled Pit in the Gulianhe Strip Coalmine in the Hola Basin in Northern Da Xing'Anling Mountains, NE China. Frontiers in Earth Science, 2022, 10, .	0.8	0
6	Changes in the permafrost environment under dual impacts of climate change and human activities in the Hola basin, northern Da Xing'anling Mountains, Northeast China. Land Degradation and Development, 2022, 33, 1219-1234.	1.8	5
7	Permafrost Degradation and Its Hydrogeological Impacts. Water (Switzerland), 2022, 14, 372.	1.2	33
8	Thermal conductivity contrast effect of organic soils and its environmental implications. Cold Regions Science and Technology, 2022, 196, 103485.	1.6	5
9	New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth System Science Data, 2022, 14, 865-884.	3.7	68
10	Dissolved Organic Carbon (DOC) in Ground Ice on Northeastern Tibetan Plateau. Frontiers in Earth Science, 2022, 10, .	0.8	1
11	New Methods for Predicting Strain Demand of Arctic Gas Pipelines across Permafrost under Frost Heave Displacement. Geofluids, 2022, 2022, 1-16.	0.3	0
12	Impacts of Permafrost Degradation on Hydrology and Vegetation in the Source Area of the Yellow River on Northeastern Qinghai-Tibet Plateau, Southwest China. Frontiers in Earth Science, 2022, 10, .	0.8	27
13	A New Stress Monitoring Method for Mechanical State of Buried Steel Pipelines under Geological Hazards. Advances in Materials Science and Engineering, 2022, 2022, 1-14.	1.0	1
14	Spatio-Temporal Patterns of Carbon Storage Derived Using the InVEST Model in Heilongjiang Province, Northeast China. Frontiers in Earth Science, 2022, 10, .	0.8	7
15	A creep model for frozen soil based onÂtheÂfractional Kelvin–Voigt's model. Acta Geotechnica, 2022, 17, 4377-4393.	2.9	6
16	The vertical distribution of soil organic carbon and nitrogen in a permafrostâ€affected wetland on the Qinghai–Tibet Plateau: Implications for Holocene development and environmental change. Permafrost and Periglacial Processes, 2022, 33, 286-297.	1.5	3
17	Shrubification along Pipeline Corridors in Permafrost Regions. Forests, 2022, 13, 1093.	0.9	1
18	TTOPâ€modelâ€based maps of permafrost distribution in Northeast China for 1961–2020. Permafrost and Periglacial Processes, 2022, 33, 425-435.	1.5	6

#	Article	IF	CITATIONS
19	Mapping the permafrost stability on the Tibetan Plateau for 2005–2015. Science China Earth Sciences, 2021, 64, 62-79.	2.3	114
20	Impacts of climate-induced permafrost degradation on vegetation: A review. Advances in Climate Change Research, 2021, 12, 29-47.	2.1	137
21	Cryogenic wedges and cryoturbations on the Ordos Plateau in North China since 50 ka BP and their paleoenvironmental implications. Permafrost and Periglacial Processes, 2021, 32, 231-247.	1.5	4
22	Numerical analysis of temperature fields around the buried arctic gas pipe-line in permafrost regions. Thermal Science, 2021, 25, 869-877.	0.5	4
23	Degrading permafrost and its impacts. Advances in Climate Change Research, 2021, 12, 1-5.	2.1	34
24	Influences of forest fires on the permafrost environment: A review. Advances in Climate Change Research, 2021, 12, 48-65.	2.1	43
25	46-Year (1973–2019) Permafrost Landscape Changes in the Hola Basin, Northeast China Using Machine Learning and Object-Oriented Classification. Remote Sensing, 2021, 13, 1910.	1.8	18
26	Streamflow Changes in the Headwater Area of Yellow River, NE Qinghai-Tibet Plateau during 1955–2040 and Their Implications. Water (Switzerland), 2021, 13, 1360.	1.2	4
27	Spatial-temporal trends of hydrological transitions in thermokarst lakes on Northeast Qinghai-Tibet Plateau based on stable isotopes. Journal of Hydrology, 2021, 597, 126314.	2.3	8
28	Holocene monsoon dynamics at Kunlun Pass on the northeastern Qinghai-Tibet Plateau. Science of the Total Environment, 2021, 771, 145369.	3.9	4
29	Biophysical permafrost map indicates ecosystem processes dominate permafrost stability in the Northern Hemisphere. Environmental Research Letters, 2021, 16, 095010.	2.2	27
30	Experimental Study on Thermal Conductivity of Organic-Rich Soils under Thawed and Frozen States. Geofluids, 2021, 2021, 1-12.	0.3	8
31	Investigation of permafrost engineering geological environment with electrical resistivity tomography: A case study along the China-Russia crude oil pipelines. Engineering Geology, 2021, 291, 106237.	2.9	17
32	Shrinking thermokarst lakes and ponds on the northeastern Qinghaiâ€Tibet plateau over the past three decades. Permafrost and Periglacial Processes, 2021, 32, 601-617.	1.5	17
33	Permafrost changes in the Nanwenghe Wetlands Reserve on the southern slope of the Da Xing'anling‒Yile'huli mountains, Northeast China. Advances in Climate Change Research, 2021, 12, 696-709.	2.1	27
34	A review of time domain reflectometry (TDR) applications in porous media. Advances in Agronomy, 2021, 168, 83-155.	2.4	38
35	Impacts of Permafrost Degradation on Carbon Stocks and Emissions under a Warming Climate: A Review. Atmosphere, 2021, 12, 1425.	1.0	21
36	Stability of the Foundation of Buried Energy Pipeline in Permafrost Region. Geofluids, 2021, 2021, 1-18.	0.3	28

#	Article	IF	CITATIONS
37	Distributive features of soil carbon and nutrients in permafrost regions affected by forest fires in northern Da Xing'anling (Hinggan) Mountains, NE China. Catena, 2020, 185, 104304.	2.2	26
38	The impact of latitude and altitude on the extent of permafrost during the Last Permafrost Maximum (LPM) in North China. Geomorphology, 2020, 350, 106909.	1.1	6
39	Vegetation response in subtropical southwest China to rapid climate change during the Younger Dryas. Earth-Science Reviews, 2020, 201, 103080.	4.0	29
40	Comparison of modulus equations of frozen soil based on spherical template indenter. Cold Regions Science and Technology, 2020, 170, 102911.	1.6	3
41	Characteristics of ground surface temperature at Chalaping in the Source Area of the Yellow River, northeastern Tibetan Plateau. Agricultural and Forest Meteorology, 2020, 281, 107819.	1.9	59
42	Improving Permafrost Physics in a Distributed Cryosphereâ€Hydrology Model and Its Evaluations at the Upper Yellow River Basin. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032916.	1.2	17
43	Quaternary Permafrost in China: Framework and Discussions. Quaternary, 2020, 3, 32.	1.0	19
44	Permafrost Degradation Leads to Biomass and Species Richness Decreases on the Northeastern Qinghai-Tibet Plateau. Plants, 2020, 9, 1453.	1.6	20
45	Variation of alpine lakes from 1986 to 2019 in the Headwater Area of the Yellow River, Tibetan Plateau using Google Earth Engine. Advances in Climate Change Research, 2020, 11, 11-21.	2.1	23
46	Thermal characteristics of cast-in-place pile foundations in warm permafrost at Beiluhe on interior Qinghai-Tibet Plateau: Field observations and numerical simulations. Soils and Foundations, 2020, 60, 90-102.	1.3	18
47	Impact of wildfire on permafrost landscapes: A review of recent advances and future prospects. Permafrost and Periglacial Processes, 2020, 31, 371-382.	1.5	98
48	A 7-ka climatic variability record inferred from peat bog sediments in the north of Bayan Har Mountains, northeastern Tibetan Plateau. Environmental Earth Sciences, 2020, 79, 1.	1.3	6
49	Morphometric Analysis of Groundwater Icings: Intercomparison of Estimation Techniques. Remote Sensing, 2020, 12, 692.	1.8	9
50	Mapping thermokarst lakes and ponds across permafrost landscapes in the Headwater Area of Yellow River on northeastern Qinghai-Tibet Plateau. International Journal of Remote Sensing, 2020, 41, 7042-7067.	1.3	23
51	Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the Headwater Area of the Yellow River, Tibetan Plateau. Geoderma, 2020, 376, 114531.	2.3	38
52	Profile distributions of soil organic carbon fractions in a permafrost region of the Qinghai–Tibet Plateau. Permafrost and Periglacial Processes, 2020, 31, 538-547.	1.5	10
53	Hydrothermal variations in soils resulting from the freezing and thawing processes in the active layer of an alpine grassland in the Qilian Mountains, northeastern Tibetan Plateau. Theoretical and Applied Climatology, 2019, 136, 929-941.	1.3	25
54	Ground surface temperature and the detection of permafrost in the rugged topography on NE Qinghai-Tibet Plateau. Geoderma, 2019, 333, 57-68.	2.3	34

会å†≻ 金

#	Article	IF	CITATIONS
55	Effects of forest fires on the permafrost environment in the northern Da Xing'anling (Hinggan) mountains, Northeast China. Permafrost and Periglacial Processes, 2019, 30, 163-177.	1.5	43
56	A generalized model for estimating effective soil thermal conductivity based on the Kasubuchi algorithm. Geoderma, 2019, 353, 227-242.	2.3	37
57	Using stable isotopes to illuminate thermokarst lake hydrology in permafrost regions on the Qinghaiâ€Tibet plateau, China. Permafrost and Periglacial Processes, 2019, 30, 58-71.	1.5	13
58	Arsenic in permafrost-affected rivers and lakes of Tibetan Plateau, China. Environmental Pollutants and Bioavailability, 2019, 31, 226-232.	1.3	13
59	The extent of permafrost during the Last Permafrost Maximum (LPM) on the Ordos Plateau, north China. Quaternary Science Reviews, 2019, 214, 87-97.	1.4	13
60	Hydro-meteorological influences on the growing season CO2 exchange of an alpine meadow in the northeastern Tibetan Plateau permafrost region: observations using eddy covariance method. Theoretical and Applied Climatology, 2019, 138, 1063-1073.	1.3	5
61	Application of electrical resistivity tomography for delineating permafrost hydrogeology in the headwater area of Yellow River on Qinghai-Tibet Plateau, SW China. Hydrogeology Journal, 2019, 27, 1725-1737.	0.9	15
62	Responses of soil organic carbon and nutrient stocks to human-induced grassland degradation in a Tibetan alpine meadow. Catena, 2019, 178, 40-48.	2.2	27
63	Use of 10Be isotope to predict landscape development in the source area of the Yellow River (SAYR), northeastern Qinghai-Tibet Plateau. Journal of Environmental Radioactivity, 2019, 203, 187-199.	0.9	6
64	Three-dimensional distribution of permafrost and responses to increasing air temperatures in the head waters of the Yellow River in High Asia. Science of the Total Environment, 2019, 666, 321-336.	3.9	9
65	Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau, China. Advances in Climate Change Research, 2019, 10, 225-239.	2.1	47
66	Delineating the hydrological processes and hydraulic connectivities under permafrost degradation on Northeastern Qinghai-Tibet Plateau, China. Journal of Hydrology, 2019, 569, 359-372.	2.3	55
67	Dissolved organic carbon in permafrost regions: A review. Science China Earth Sciences, 2019, 62, 349-364.	2.3	41
68	Evolution of permafrost in China during the last 20 ka. Science China Earth Sciences, 2019, 62, 1207-1223.	2.3	44
69	Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chinese Science Bulletin, 2019, 64, 2783-2795.	0.4	169
70	Tightening ecological management facilitates green development in the Qilian Mountains. Chinese Science Bulletin, 2019, 64, 2928-2937.	0.4	27
71	Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. Geoderma, 2018, 312, 74-85.	2.3	102
72	Spatiotemporal Changes in Active Layer Thickness under Contemporary and Projected Climate in the Northern Hemisphere. Journal of Climate, 2018, 31, 251-266.	1.2	90

#	Article	lF	CITATIONS
73	Mid-late Holocene Asian monsoon evolution indicated by peat deposits in the source area of the Yellow River, northeastern Tibetan Plateau. Theoretical and Applied Climatology, 2018, 134, 499-512.	1.3	6
74	Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China. Science of the Total Environment, 2018, 618, 1033-1045.	3.9	100
75	Elevationâ€dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghaiâ€Tibet Plateau, southwest China. Permafrost and Periglacial Processes, 2018, 29, 257-270.	1.5	54
76	Consumption of atmospheric methane by the Qinghai–Tibet Plateau alpine steppe ecosystem. Cryosphere, 2018, 12, 2803-2819.	1.5	15
77	Influences of Topographic Shadows on the Thermal and Hydrological Processes in a Cold Region Mountainous Watershed in Northwest China. Journal of Advances in Modeling Earth Systems, 2018, 10, 1439-1457.	1.3	36
78	Changing runoff generation in the source area of the Yellow River: Mechanisms, seasonal patterns and trends. Cold Regions Science and Technology, 2018, 155, 58-68.	1.6	15
79	Evaluation of groundwater discharge into surface water by using Radon-222 in the Source Area of the Yellow River, Qinghai-Tibet Plateau. Journal of Environmental Radioactivity, 2018, 192, 257-266.	0.9	23
80	Hydrological insights from hydrogen and oxygen isotopes in Source Area of the Yellow River, east-northern part of Qinghai–Tibet Plateau. Journal of Radioanalytical and Nuclear Chemistry, 2018, 317, 131-144.	0.7	15
81	Characteristics of Waterâ€Heat Exchanges and Inconsistent Surface Temperature Changes at an Elevational Permafrost Site on the Qinghaiâ€ītibet Plateau. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,057.	1.2	51
82	Distributed Temperature Sensing for Soil Physical Measurements and Its Similarity to Heat Pulse Method. Advances in Agronomy, 2018, 148, 173-230.	2.4	41
83	Very Large Cryoturbation Structures of Last Permafrost Maximum Age at the Foot of Qilian Mountains (NE Tibet Plateau, China): a Discussion. Permafrost and Periglacial Processes, 2017, 28, 757-762.	1.5	8
84	In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biology and Biochemistry, 2017, 111, 66-77.	4.2	36
85	Hydro-thermal processes and thermal offsets of peat soils in the active layer in an alpine permafrost region, NE Qinghai-Tibet plateau. Global and Planetary Change, 2017, 156, 1-12.	1.6	27
86	No protection of permafrost due to desertification on the Qinghai–Tibet Plateau. Scientific Reports, 2017, 7, 1544.	1.6	17
87	Thermal recovery process of a backfilled open-pit in permafrost area at the Gulian strip coal mine in Northeast China. Journal of Mountain Science, 2017, 14, 2212-2229.	0.8	11
88	A modified normalized model for predicting effective soil thermal conductivity. Acta Geotechnica, 2017, 12, 1281-1300.	2.9	94
89	Unraveling of permafrost hydrological variabilities on Central Qinghai-Tibet Plateau using stable isotopic technique. Science of the Total Environment, 2017, 605-606, 199-210.	3.9	31
90	Holocene aeolian activity in the Headwater Region of the Yellow River, Northeast Tibet Plateau, China: A first approach by using OSL-dating. Catena, 2017, 149, 150-157.	2.2	29

#	Article	IF	CITATIONS
91	Observational study on the active layer freeze–thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Tibet Plateau. Quaternary International, 2017, 440, 13-22.	0.7	31
92	Influences of Frozen Ground and Climate Change on Hydrological Processes in an Alpine Watershed: A Case Study in the Upstream Area of the Hei'he River, Northwest China. Permafrost and Periglacial Processes, 2017, 28, 420-432.	1.5	47
93	Estimating water sources mixing using 222Rn isotope in the Source Area of the Yellow River, Tibet Plateau. , 2017, , .		0
94	Thermal state of soils in the active layer and underlain permafrost at the kilometer post 304 site along the China-Russia Crude Oil Pipeline. Journal of Mountain Science, 2016, 13, 1984-1994.	0.8	15
95	Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Scientific Reports, 2016, 6, 37473.	1.6	58
96	Recent changes in the active layer thickness across the northern hemisphere. Environmental Earth Sciences, 2016, 75, 1.	1.3	88
97	Evaluation of five composite dielectric mixing models for understanding relationships between effective permittivity and unfrozen water content. Cold Regions Science and Technology, 2016, 130, 33-42.	1.6	32
98	Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai–Tibet Plateau using stable isotopes. Global and Planetary Change, 2016, 140, 1-8.	1.6	48
99	Evolutions of water stable isotopes and the contributions of cryosphere to the alpine river on the Tibetan Plateau. Environmental Earth Sciences, 2016, 75, 1.	1.3	23
100	Investigation of the freeze–thaw states of foundation soils in permafrost areas along the China–Russia Crude Oil Pipeline (CRCOP) route using ground-penetrating radar (GPR). Cold Regions Science and Technology, 2016, 126, 10-21.	1.6	68
101	Spatiotemporal changes in extreme ground surface temperatures and the relationship with air temperatures in the Three-River Source Regions during 1980–2013. Theoretical and Applied Climatology, 2016, 123, 885-897.	1.3	19
102	Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains. Chinese Science Bulletin, 2016, 61, 2742-2756.	0.4	17
103	Validation of iceâ€wedge isotopes at Yituli'he, northeastern China as climate proxy. Boreas, 2015, 44, 502-510.	1.2	7
104	Thermal Impacts of Boreal Forest Vegetation on Active Layer and Permafrost Soils in Northern da Xing'Anling (Hinggan) Mountains, Northeast China. Arctic, Antarctic, and Alpine Research, 2015, 47, 267-279.	0.4	45
105	Crude Oil Treatment Leads to Shift of Bacterial Communities in Soils from the Deep Active Layer and Upper Permafrost along the China-Russia Crude Oil Pipeline Route. PLoS ONE, 2014, 9, e96552.	1.1	90
106	The extent of permafrost in China during the local Last Glacial Maximum (LLGM). Boreas, 2014, 43, 688-698.	1.2	40
107	The <scp>L</scp> ast <scp>P</scp> ermafrost <scp>M</scp> aximum (<scp>LPM</scp>) map of the <scp>N</scp> orthern <scp>H</scp> emisphere: permafrost extent and mean annual air temperatures, 25–17 ka <scp>BP</scp> . Boreas, 2014, 43, 652-666.	1.2	179
108	Spatiotemporal variations of climate warming in northern Northeast China as indicated by freezing and thawing indices. Quaternary International, 2014, 349, 187-195.	0.7	60

会å†> ɇ'

#	Article	IF	CITATIONS
109	Spatiotemporal characteristics of freezing and thawing of the active layer in the source areas of the Yellow River (SAYR). Science Bulletin, 2014, 59, 3034-3045.	1.7	40
110	Driving forces of aeolian desertification in the source region of the Yellow River: 1975–2005. Environmental Earth Sciences, 2013, 70, 3245-3254.	1.3	28
111	Early to mid-Holocene lake high-stand sediments at Lake Donggi Cona, northeastern Tibetan Plateau, China. Quaternary Research, 2013, 79, 325-336.	1.0	82
112	Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeology Journal, 2013, 21, 5-23.	0.9	280
113	Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafrost and Periglacial Processes, 2012, 23, 322-333.	1.5	210
114	Pyrosequencing Investigation into the Bacterial Community in Permafrost Soils along the China-Russia Crude Oil Pipeline (CRCOP). PLoS ONE, 2012, 7, e52730.	1.1	61
115	δ 18O and Î'D records of inactive ice wedge in Yitulihe, Northeastern China and their paleoclimatic implications. Science China Earth Sciences, 2011, 54, 119-126.	2.3	12
116	Prediction of permafrost changes in Northeastern China under a changing climate. Science China Earth Sciences, 2011, 54, 924-935.	2.3	94
117	The extraction of watershed characteristics of the Source Area of Yellow River based on SRTM DEM with ArcGIS. , 2011, , .		0
118	Development of freezing–thawing processes of foundation soils surrounding the China–Russia Crude Oil Pipeline in the permafrost areas under a warming climate. Cold Regions Science and Technology, 2010, 64, 226-234.	1.6	45
119	Estimates on thermal effects of the China–Russia crude oil pipeline in permafrost regions. Cold Regions Science and Technology, 2010, 64, 243-247.	1.6	32
120	Environmental hazards and contingency plans along the proposed China–Russia Oil Pipeline route, Northeastern China. Cold Regions Science and Technology, 2010, 64, 271-278.	1.6	29
121	Zonation and assessment of frozen-ground conditions for engineering geology along the China–Russia crude oil pipeline route from Mo'he to Daqing, Northeastern China. Cold Regions Science and Technology, 2010, 64, 213-225.	1.6	61
122	Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai–Tibet Plateau and their mitigation. Cold Regions Science and Technology, 2010, 64, 279-288.	1.6	54
123	Model test study on influence of freezing and thawing on the crude oil pipeline in cold regions. Cold Regions Science and Technology, 2010, 64, 262-270.	1.6	52
124	Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters, 2009, 4, 045206.	2.2	219
125	Symbiosis of marshes and permafrost in Da and Xiao Hinggan Mountains in northeastern China. Chinese Geographical Science, 2008, 18, 62-69.	1.2	50
126	Cryospheric change in China. Global and Planetary Change, 2008, 62, 210-218.	1.6	307

#	Article	IF	CITATIONS
127	Changes in permafrost environments along the Qinghai–Tibet engineering corridor induced by anthropogenic activities and climate warming. Cold Regions Science and Technology, 2008, 53, 317-333.	1.6	172
128	Evolution of permafrost on the Qinghai-Xizang (Tibet) Plateau since the end of the late Pleistocene. Journal of Geophysical Research, 2007, 112, .	3.3	92
129	Degradation of permafrost in the Xing'anling Mountains, northeastern China. Permafrost and Periglacial Processes, 2007, 18, 245-258.	1.5	200
130	Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway. Science in China Series D: Earth Sciences, 2006, 49, 1170-1183.	0.9	117
131	Permafrost and climatic change in China. Global and Planetary Change, 2000, 26, 387-404.	1.6	220
132	Organic versus Inorganic Carbon Exports from Glacier and Permafrost Watersheds in Qinghai–Tibet Plateau. Aquatic Geochemistry, 0, , 1.	1.5	4
133	Distributive Features of Dissolved Organic Carbon in Aquatic Systems in the Source Area of the Yellow River on the Northeastern Qinghai–Tibet Plateau, China. Frontiers in Earth Science, 0, 10, .	0.8	Ο