
João M M AraÃojo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6416124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the Absorption of Fluorinated Gases in Fluorinated Ionic Liquids for Recovering Purposes Using Soft-SAFT. Journal of Chemical & Engineering Data, 2022, 67, 1951-1963.	1.9	2
2	Design of Ionic Liquids for Fluorinated Gas Absorption: COSMO-RS Selection and Solubility Experiments. Environmental Science & amp; Technology, 2022, 56, 5898-5909.	10.0	23
3	Synthesis and Characterization of Fluorinated Phosphonium Ionic Liquids to Use as New Engineering Solvents. ChemEngineering, 2022, 6, 38.	2.4	0
4	Disclosing the Potential of Fluorinated Ionic Liquids as Interferon-Alpha 2b Delivery Systems. Nanomaterials, 2022, 12, 1851.	4.1	1
5	Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part II: Gas Separation Properties toward Fluorinated Greenhouse Gases. Nanomaterials, 2021, 11, 582.	4.1	18
6	Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part I: Membrane Synthesis and Characterization. Nanomaterials, 2021, 11, 607.	4.1	10
7	Ecotoxicity and Hemolytic Activity of Fluorinated Ionic Liquids. Sustainable Chemistry, 2021, 2, 115-126.	4.7	5
8	Unveiling the Influence of Non-Toxic Fluorinated Ionic Liquids Aqueous Solutions in the Encapsulation and Stability of Lysozyme. Sustainable Chemistry, 2021, 2, 149-166.	4.7	6
9	Waste Management Strategies to Mitigate the Effects of Fluorinated Greenhouse Gases on Climate Change. Applied Sciences (Switzerland), 2021, 11, 4367.	2.5	21
10	Electron Driven Reactions in Tetrafluoroethane: Positive and Negative Ion Formation. Journal of the American Society for Mass Spectrometry, 2021, 32, 1459-1468.	2.8	8
11	Insight on the Solubility of R134a in Fluorinated Ionic Liquids and Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2020, 65, 4956-4969.	1.9	19
12	Screening of Ionic Liquids and Deep Eutectic Solvents for Physical CO ₂ Absorption by Soft-SAFT Using Key Performance Indicators. Journal of Chemical & Engineering Data, 2020, 65, 5844-5861.	1.9	40
13	Process Evaluation of Fluorinated Ionic Liquids as F-Gas Absorbents. Environmental Science & Technology, 2020, 54, 12784-12794.	10.0	28
14	Absorption of Fluorinated Greenhouse Gases in Deep Eutectic Solvents. Industrial & Engineering Chemistry Research, 2020, 59, 13246-13259.	3.7	23
15	Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids. Industrial & Engineering Chemistry Research, 2019, 58, 20769-20778.	3.7	55
16	Physicochemical Characterization of Ionic Liquid Binary Mixtures Containing 1-Butyl-3-methylimidazolium as the Common Cation. Journal of Chemical & Engineering Data, 2019, 64, 4891-4903.	1.9	17
17	Anomalous and Not-So-Common Behavior in Common Ionic Liquids and Ionic Liquid-Containing Systems. Frontiers in Chemistry, 2019, 7, 450.	3.6	24
18	Insights into the influence of the molecular structures of fluorinated ionic liquids on their thermophysical properties. A soft-SAFT based approach. Physical Chemistry Chemical Physics, 2019, 21, 6362-6380.	2.8	28

JOãO M M ARAúJO

#	Article	IF	CITATIONS
19	Acute Aquatic Toxicity and Biodegradability of Fluorinated Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 3733-3741.	6.7	57
20	Human cytotoxicity and octanol/water partition coefficients of fluorinated ionic liquids. Chemosphere, 2019, 216, 576-586.	8.2	53
21	Design of task-specific fluorinated ionic liquids: nanosegregation <i>versus</i> hydrogen-bonding ability in aqueous solutions. Chemical Communications, 2018, 54, 3524-3527.	4.1	17
22	Influence of Nanosegregation on the Phase Behavior of Fluorinated Ionic Liquids. Journal of Physical Chemistry C, 2017, 121, 5415-5427.	3.1	46
23	Fluorinated ionic liquids for protein drug delivery systems: Investigating their impact on the structure and function of lysozyme. International Journal of Pharmaceutics, 2017, 526, 309-320.	5.2	49
24	Thermophysical Characterization of Ionic Liquids Based on the Perfluorobutanesulfonate Anion: Experimental and Soft‧AFT Modeling Results. ChemPhysChem, 2017, 18, 2012-2023.	2.1	23
25	Influence of Nanosegregation on the Surface Tension of Fluorinated Ionic Liquids. Langmuir, 2016, 32, 6130-6139.	3.5	38
26	Aggregation Behavior and Total Miscibility of Fluorinated Ionic Liquids in Water. Langmuir, 2015, 31, 1283-1295.	3.5	54
27	Cholinium-based ionic liquids with pharmaceutically active anions. RSC Advances, 2014, 4, 28126-28132.	3.6	93
28	High ionicity ionic liquids (HIILs): comparing the effect of ethylsulfonate and ethylsulfate anions. Physical Chemistry Chemical Physics, 2013, 15, 18138.	2.8	20
29	Evaluation of solubility and partition properties of ampicillin-based ionic liquids. International Journal of Pharmaceutics, 2013, 456, 553-559.	5.2	97
30	Aqueous biphasic systems: a benign route using cholinium-based ionic liquids. RSC Advances, 2013, 3, 1835-1843.	3.6	138
31	Fluorinated Ionic Liquids: Properties and Applications. ACS Sustainable Chemistry and Engineering, 2013, 1, 427-439.	6.7	147
32	Hydrogen-Bonding and the Dissolution Mechanism of Uracil in an Acetate Ionic Liquid: New Insights from NMR Spectroscopy and Quantum Chemical Calculations. Journal of Physical Chemistry B, 2013, 117, 4109-4120.	2.6	27
33	Inorganic salts in purely ionic liquid media: the development of high ionicity ionic liquids (HIILs). Chemical Communications, 2012, 48, 3656.	4.1	91
34	Aqueous biphasic systems: a boost brought about by using ionic liquids. Chemical Society Reviews, 2012, 41, 4966.	38.1	726
35	Development of novel ionic liquids based on ampicillin. MedChemComm, 2012, 3, 494.	3.4	105
36	Solvation of Nucleobases in 1,3-Dialkylimidazolium Acetate Ionic Liquids: NMR Spectroscopy Insights into the Dissolution Mechanism. Journal of Physical Chemistry B, 2011, 115, 10739-10749.	2.6	31

JOãO M M ARAúJO

#	Article	IF	CITATIONS
37	Chiral separation by two-column, semi-continuous, open-loop simulated moving-bed chromatography. Journal of Chromatography A, 2010, 1217, 5407-5419.	3.7	21
38	On-line enantiomeric analysis using high-performance liquid chromatography in chiral separation by simulated moving bed. Journal of Chromatography A, 2008, 1189, 292-301.	3.7	15
39	Two-column simulated moving-bed process for binary separation. Journal of Chromatography A, 2008, 1180, 42-52.	3.7	17
40	Determination of competitive isotherms of enantiomers by a hybrid inverse method using overloaded band profiles and the periodic state of the simulated moving-bed process. Journal of Chromatography A, 2008, 1189, 302-313.	3.7	10
41	Optimal design of simulated movingâ€bed processes under flow rate uncertainty. AICHE Journal, 2007, 53, 2630-2642.	3.6	16
42	Experimental assessment of simulated moving bed and varicol processes using a single-column setup. Journal of Chromatography A, 2007, 1142, 69-80.	3.7	38
43	Optimal design and experimental validation of synchronous, asynchronous and flow-modulated, simulated moving-bed processes using a single-column setup. Journal of Chromatography A, 2007, 1162, 14-23.	3.7	19
44	Use of Single-Column Models for Efficient Computation of the Periodic State of a Simulated Moving-Bed Process. Industrial & Engineering Chemistry Research, 2006, 45, 5314-5325.	3.7	33
45	Optimal design and operation of a certain class of asynchronous simulated moving bed processes. Journal of Chromatography A, 2006, 1132, 76-89.	3.7	29
46	Single-column simulated-moving-bed process with recycle lag. AICHE Journal, 2005, 51, 1641-1653.	3.6	52