Kengo Shimanoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6415988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amplifying the receptor function on Ba0.9La0.1FeO3-SnO2 composite particle surface for high sensitivity toward ethanol gas sensing. Sensors and Actuators B: Chemical, 2022, 354, 131256.	4.0	3
2	MOF-derived Au-NiO/In2O3 for selective and fast detection of toluene at ppb-level in high humid environments. Sensors and Actuators B: Chemical, 2022, 360, 131631.	4.0	18
3	Highly Sensitive Carbon Monoxide Sensor Element with Wide-Range Humidity Resistance by Loading Pd Nanoparticles on SnO2 Surface. Sensors, 2022, 22, 2934.	2.1	3
4	MOF-derived porous NiO/NiFe2O4 nanocubes for improving the acetone detection. Sensors and Actuators B: Chemical, 2022, 366, 131985.	4.0	18
5	Lowering the sintering temperature of Li ₇ La ₃ Zr ₂ O ₁₂ electrolyte for co-fired all-solid-state batteries via partial Bi substitution and precise control of compositional deviation. lournal of the Ceramic Society of Japan. 2022. 130. 416-423.	0.5	7
6	Highly sensitive isoprene gas sensor using Au-loaded pyramid-shaped ZnO particles. Sensors and Actuators B: Chemical, 2021, 326, 128999.	4.0	53
7	Chemical Activation of Nitrogen-doped Carbon Derived from Chitosan with ZnCl ₂ to Produce a High-performance Gas Diffusion-type Oxygen Electrode. Electrochemistry, 2021, 89, 36-42.	0.6	5
8	Pt nanoparticles supported on nitrogen-doped porous carbon as efficient oxygen reduction catalysts synthesized via a simple alcohol reduction method. SN Applied Sciences, 2021, 3, 1.	1.5	4
9	Highly Porous Chitosan-derived Nitrogen-doped Carbon Applicable for High-performance Gas Diffusion Oxygen Electrodes. Chemistry Letters, 2021, 50, 636-639.	0.7	0
10	The gas sensor utilizing polyaniline/ MoS2 nanosheets/ SnO2 nanotubes for the room temperature detection of ammonia. Sensors and Actuators B: Chemical, 2021, 332, 129444.	4.0	107
11	Impact of Pd nanoparticle loading method on SnO2 surface for natural gas detection in humid atmosphere. Journal of Materials Science, 2021, 56, 13975-13988.	1.7	7
12	N-pentanol sensor based on ZnO nanorods functionalized with Au catalysts. Sensors and Actuators B: Chemical, 2021, 339, 129888.	4.0	35
13	High sensitivity and low detection limit of acetone sensor based on NiO/Zn2SnO4 p-n heterojunction octahedrons. Sensors and Actuators B: Chemical, 2021, 339, 129912.	4.0	40
14	Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection. Sensors and Actuators B: Chemical, 2021, 340, 129971.	4.0	108
15	Unexpected and enhanced electrostatic adsorption capacity of oxygen vacancy-rich cobalt-doped In2O3 for high-sensitive MEMS toluene sensor. Sensors and Actuators B: Chemical, 2021, 342, 129949.	4.0	26
16	DC-Voltage-Induced High Oxygen Permeation through a Lanthanum Silicate Electrolyte with a Cerium Oxide Thin Film. Electrochemistry, 2021, 89, 427-432.	0.6	0
17	Ce0.8Gd0.2O1.95-based mixed potential type triethylamine sensor utilizing La2NiFeO6 sensing electrode. Sensors and Actuators B: Chemical, 2021, 345, 130438.	4.0	9

18 Fundamentals of semiconductor gas sensors. , 2020, , 3-38.

#	Article	IF	CITATIONS
19	Double-Step Modulation of the Pulse-Driven Mode for a High-Performance SnO ₂ Micro Gas Sensor: Designing the Particle Surface via a Rapid Preheating Process. ACS Sensors, 2020, 5, 3449-3456.	4.0	16
20	Selective Detection of Toluene Using Pulse-Driven SnO ₂ Micro Gas Sensors. ACS Applied Electronic Materials, 2020, 2, 2913-2920.	2.0	30
21	One-Trillionth Level Toluene Detection Using a Dual-Designed Semiconductor Gas Sensor: Material and Sensor-Driven Designs. ACS Applied Electronic Materials, 2020, 2, 4122-4126.	2.0	8
22	High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sensors and Actuators B: Chemical, 2020, 320, 128292.	4.0	124
23	Rapid and Stable Detection of Carbon Monoxide in Changing Humidity Atmospheres Using Clustered In ₂ O ₃ /CuO Nanospheres. ACS Sensors, 2020, 5, 1040-1049.	4.0	48
24	Effect of Boron Substitution on Oxide-Ion Conduction in <i>c</i> -Axis-Oriented Apatite-Type Lanthanum Silicate. Journal of Physical Chemistry C, 2020, 124, 2879-2885.	1.5	11
25	Novel Solid Electrolyte CO ₂ Gas Sensors Based on <i>c</i> Axis-Oriented Y-Doped La _{9.66} Si _{5.3} B _{0.7} O _{26.14} . ACS Applied Materials & Interfaces, 2020, 12, 21515-21520.	4.0	11
26	Crystal Growth Mechanism of Highly <i>c</i> -Axis-Oriented Apatite-Type Lanthanum Borosilicate Using B ₂ O ₃ Vapor. ACS Omega, 2020, 5, 31936-31942.	1.6	3
27	La0.4Ca0.6Mn0.9Fe0.1O3 nanoparticle-dispersed nitrogen-doped porous carbon composite as an efficient oxygen reduction electrocatalyst. Catalysis Communications, 2019, 131, 105786.	1.6	2
28	Consideration for Oxygen Adsorption Species on SnO2 Semiconductor Gas Sensors. Proceedings (mdpi), 2019, 14, .	0.2	0
29	Ultra-High Sensitive (Ppt) Gas Sensor Based on the Pulse Heating Using MEMS Technique. Proceedings (mdpi), 2019, 14, .	0.2	0
30	Ultra-High Sensitive Gas Detection Using Pulse-Driven MEMS Sensor Based on Tin Dioxide. , 2019, , .		2
31	Effect of Ambient Oxygen Partial Pressure on the Hydrogen Response of SnO2 Semiconductor Gas Sensors. Journal of the Electrochemical Society, 2019, 166, B618-B622.	1.3	14
32	Highly Dispersed LaCoO ₃ on Carbon Prepared via Low-energy Bead Milling as an Oxygen Reduction Electrocatalyst. Electrochemistry, 2019, 87, 193-195.	0.6	3
33	Oxygen adsorption on ZrO2-loaded SnO2 gas sensors in humid atmosphere. Journal of Materials Science, 2019, 54, 3135-3143.	1.7	16
34	Oxygen pumping based on <i>c</i> -axis-oriented lanthanum silicate ceramics: challenge toward low operating temperature. Journal of the Ceramic Society of Japan, 2019, 127, 1-4.	0.5	7
35	Ultraselective Toluene-Gas Sensor: Nanosized Gold Loaded on Zinc Oxide Nanoparticles. Analytical Chemistry, 2018, 90, 1959-1966.	3.2	103
36	Highly Sensitive Ethanol Gas Sensor Using Pyramid-Shaped ZnO Particles with (0001) Basal Plane. Journal of Physical Chemistry C, 2018, 122, 7353-7360.	1.5	46

#	Article	IF	CITATIONS
37	Sizeâ€Independent and Ultrahigh CO Gas Sensor Based on TiO ₂ Modified ZnO Tetrapods. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700784.	0.8	10
38	Effect of Humid Aging on the Oxygen Adsorption in SnO2 Gas Sensors. Sensors, 2018, 18, 254.	2.1	45
39	Determination of Effective Oxygen Adsorption Species for CO Sensing Based on Electric Properties of Indium Oxide. Journal of the Electrochemical Society, 2018, 165, B275-B280.	1.3	19
40	Pulse-Driven Semiconductor Gas Sensors Toward ppt Level Toluene Detection. Analytical Chemistry, 2018, 90, 11219-11223.	3.2	49
41	Urea treatment of nitrogen-doped carbon leads to enhanced performance for the oxygen reduction reaction. Journal of Materials Research, 2018, 33, 1612-1624.	1.2	24
42	Morphology, microstructure, and surface area of La-added MgFe ₂ O ₄ powder. Journal of the Ceramic Society of Japan, 2018, 126, 402-407.	0.5	7
43	Hierarchical Assembly of α-Fe ₂ O ₃ Nanorods on Multiwall Carbon Nanotubes as a High-Performance Sensing Material for Gas Sensors. ACS Applied Materials & Interfaces, 2017, 9, 8919-8928.	4.0	108
44	Flower-like ZnO hollow microspheres loaded with CdO nanoparticles as high performance sensing material for gas sensors. Sensors and Actuators B: Chemical, 2017, 250, 692-702.	4.0	84
45	Visible Light-Driven Photoenergy Storage and Photocatalysis Using Polyoxometallates Coupled with a Ru Complex. Journal of Physical Chemistry C, 2017, 121, 13515-13523.	1.5	11
46	Unexpected gas sensing properties of SiO ₂ /SnO ₂ core–shell nanofibers under dry and humid conditions. Journal of Materials Chemistry C, 2017, 5, 6369-6376.	2.7	30
47	Soot oxidation performance with a HZSM-5 supported Ag nanoparticles catalyst and the characterization of Ag species. RSC Advances, 2017, 7, 43789-43797.	1.7	9
48	The design of excellent xylene gas sensor using Sn-doped NiO hierarchical nanostructure. Sensors and Actuators B: Chemical, 2017, 253, 1152-1162.	4.0	147
49	Effect of Thermal Conductivity of Catalytic Materials on Soot Sensing Performance Based on a Combustion-type Sensor. Chemistry Letters, 2017, 46, 1304-1307.	0.7	Ο
50	Enhanced gas sensing properties to acetone vapor achieved by α-Fe2O3 particles ameliorated with reduced graphene oxide sheets. Sensors and Actuators B: Chemical, 2017, 241, 904-914.	4.0	124
51	Enhanced Gas Sensing Properties of SnO ₂ Hollow Spheres Decorated with CeO ₂ Nanoparticles Heterostructure Composite Materials. ACS Applied Materials & Interfaces, 2016, 8, 6669-6677.	4.0	271
52	Vanadium oxide loading on tin dioxide nanoparticles for improving gas detection in a humid atmosphere. Materials Letters, 2016, 179, 214-216.	1.3	5
53	High Performance of SnO2-Based Gas Sensor by Introducing Perovskite-Type Oxides. ECS Transactions, 2016, 75, 31-37.	0.3	3
54	Efficient solution route to transparent ZnO semiconductor films using colloidal nanocrystals. Journal of Asian Ceramic Societies, 2016, 4, 319-323.	1.0	10

#	Article	IF	CITATIONS
55	Micronization of MgFe ₂ O ₄ particles doped with Si. Journal of the Ceramic Society of Japan, 2016, 124, 777-780.	0.5	2
56	Antimony-Doped Tin Dioxide Gas Sensors Exhibiting High Stability in the Sensitivity to Humidity Changes. ACS Sensors, 2016, 1, 913-920.	4.0	114
57	Thermally Stable SnO ₂ Nanocrystals: Synthesis and Application to Gas Sensors. Crystal Growth and Design, 2016, 16, 4203-4208.	1.4	13
58	Role of vanadium oxide and palladium multiple loading on the sensitivity and recovery kinetics of tin dioxide based gas sensors. RSC Advances, 2016, 6, 5169-5176.	1.7	12
59	Influence of Processing Conditions on the Performance of Cu ₂ ZnSnS ₄ Nanocrystal Solar Cells. ChemistrySelect, 2016, 1, 86-93.	0.7	4
60	Surface chemistry of neat tin oxide sensor for response to hydrogen gas in air. Sensors and Actuators B: Chemical, 2016, 227, 403-410.	4.0	14
61	Oxygen separation from air using Ba0.95La0.05FeO3â^' membranes fitted with porous La1â^'Sr FeO3â~' layers. Ceramics International, 2015, 41, 7830-7835.	2.3	8
62	Impurity level in SnO2 materials and its impact on gas sensing properties. Sensors and Actuators B: Chemical, 2015, 210, 719-725.	4.0	16
63	Effect of Water Vapor on Pd-Loaded SnO ₂ Nanoparticles Gas Sensor. ACS Applied Materials & Interfaces, 2015, 7, 5863-5869.	4.0	201
64	Pulse-Driven Micro Gas Sensor Fitted with Clustered Pd/SnO ₂ Nanoparticles. Analytical Chemistry, 2015, 87, 8407-8415.	3.2	61
65	Synthesis of Copper–Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells. Inorganic Chemistry, 2015, 54, 7840-7845.	1.9	68
66	Pd Size Effect on the Gas Sensing Properties of Pd-Loaded SnO ₂ in Humid Atmosphere. ACS Applied Materials & Interfaces, 2015, 7, 15618-15625.	4.0	66
67	Visibleâ€Light Sensitization and Photoenergy Storage in Quantum Dot/Polyoxometalate Systems. Chemistry - A European Journal, 2015, 21, 7462-7469.	1.7	14
68	Surface-modification of SnO ₂ nanoparticles by incorporation of Al for the detection of combustible gases in a humid atmosphere. RSC Advances, 2015, 5, 86347-86354.	1.7	28
69	Highly sensitive acetone gas sensor based on porous ZnFe2O4 nanospheres. Sensors and Actuators B: Chemical, 2015, 206, 577-583.	4.0	192
70	Cu-doped α-Fe2O3 hierarchical microcubes: Synthesis and gas sensing properties. Sensors and Actuators B: Chemical, 2014, 193, 616-622.	4.0	115
71	H ₂ 0/D ₂ 0 Exchange on SnO ₂ Materials in the Presence of CO: Operando Spectroscopic and Electric Resistance Measurements. Journal of Physical Chemistry C, 2014, 118, 2554-2563.	1.5	12
72	Solution-Processed Cu ₂ ZnSnS ₄ Nanocrystal Solar Cells: Efficient Stripping of Surface Insulating Layers Using Alkylating Agents. Journal of Physical Chemistry C, 2014, 118, 804-810.	1.5	38

#	Article	IF	CITATIONS
73	Hollow zinc oxide microspheres functionalized by Au nanoparticles for gas sensors. RSC Advances, 2014, 4, 28005.	1.7	36
74	Microwave hydrothermal synthesis and gas sensing application of porous ZnO core–shell microstructures. RSC Advances, 2014, 4, 32538.	1.7	36
75	Nanoparticle Cluster Gas Sensor: Controlled Clustering of SnO ₂ Nanoparticles for Highly Sensitive Toluene Detection. ACS Applied Materials & Interfaces, 2014, 6, 5319-5326.	4.0	159
76	Hierarchical α-Fe ₂ 0 ₃ /NiO Composites with a Hollow Structure for a Gas Sensor. ACS Applied Materials & Interfaces, 2014, 6, 12031-12037.	4.0	255
77	Determination of Oxygen Adsorption Species on SnO ₂ : Exact Analysis of Gas Sensing Properties Using a Sample Gas Pretreatment System. Journal of the Electrochemical Society, 2014, 161, B123-B128.	1.3	45
78	Porous ZnO/ZnCo ₂ O ₄ hollow spheres: synthesis, characterization, and applications in gas sensing. Journal of Materials Chemistry A, 2014, 2, 17683-17690.	5.2	175
79	WO ₃ Nanolamella Gas Sensor: Porosity Control Using SnO ₂ Nanoparticles for Enhanced NO ₂ Sensing. Langmuir, 2014, 30, 2571-2579.	1.6	160
80	Hollow cylinder ZnO/SnO2 nanostructures synthesized by ultrasonic spray pyrolysis and their gas-sensing performance. CrystEngComm, 2014, 16, 6135.	1.3	21
81	Hollow SnO ₂ /α-Fe ₂ O ₃ spheres with a double-shell structure for gas sensors. Journal of Materials Chemistry A, 2014, 2, 1302-1308.	5.2	142
82	H2 Sensing Mechanism of Pd-Loaded WO3 Nanoparticle Gas Sensors. Chemistry Letters, 2014, 43, 1435-1437.	0.7	23
83	Two types of moisture effects on the receptor function of neat tin oxide gas sensor to oxygen. Sensors and Actuators B: Chemical, 2013, 176, 443-452.	4.0	35
84	Oxygen Reduction Activity of Carbon-Supported La _{1–<i>x</i>} Ca _{<i>x</i>} Mn _{1–<i>y</i>} Fe _{<i>y</i>} O _{ Nanoparticles. Chemistry of Materials, 2013, 25, 3072-3079.}	3 8/2 ub>	32
85	Pore and Particle Size Control of Gas Sensing Films Using SnO ₂ Nanoparticles Synthesized by Seed-Mediated Growth: Design of Highly Sensitive Gas Sensors. Journal of Physical Chemistry C, 2013, 117, 17574-17582.	1.5	116
86	High sensitive gas sensor based on Pd-loaded WO3 nanolamellae. Thin Solid Films, 2013, 548, 677-682.	0.8	31
87	Proposal of contact potential promoted oxide semiconductor gas sensor. Sensors and Actuators B: Chemical, 2013, 187, 162-167.	4.0	38
88	Gas reception and signal transduction of neat tin oxide semiconductor sensor for response to oxygen. Thin Solid Films, 2013, 548, 695-702.	0.8	14
89	Catalytic Combustionâ€Type Hydrogen Sensor Using <scp><scp>BaTiO</scp></scp> ₃ â€based <scp>PTC</scp> Thermistor. Journal of the American Ceramic Society, 2013, 96, 1789-1794.	1.9	17
90	Discharge/charge characteristic of Li-air cells using carbon-supported LaMn0.6Fe0.4O3 as an electrocatalyst. Journal of Power Sources, 2013, 242, 216-221.	4.0	21

#	Article	IF	CITATIONS
91	Efficient Photorecovery of Noble Metals from Solution Using a Î ³ -SiW10O36/Surfactant Hybrid Photocatalyst. Langmuir, 2013, 29, 2128-2135.	1.6	8
92	Photocatalytic Recovery of Noble Metals from Waste Solutions Using a Polyoxometallate (POM)-Based Hybrid Photocatalyst. Advanced Materials Research, 2013, 747, 518-521.	0.3	1
93	A Micro Gas Sensor Using TiO ₂ Nanotubes to Detect Volatile Organic Compounds. Applied Physics Express, 2013, 6, 047201.	1.1	12
94	Interaction of Water Vapor with SnO2 Sensor Materials: A Comparison of DRIFTS and Resistance Measurements. ECS Transactions, 2013, 50, 221-229.	0.3	1
95	Effects of Crystallite Size and Donor Density on the Sensor Response of SnO ₂ Nano-Particles in the State of Volume Depletion. Journal of the Electrochemical Society, 2012, 159, J136-J141.	1.3	13
96	Preparation of nano-LaNiO3 support electrode for rechargeable metal-air batteries. Electrochemistry Communications, 2012, 24, 50-52.	2.3	22
97	Preparation of a Stable Sol Suspension of Pd-Loaded SnO ₂ Nanocrystals by a Photochemical Deposition Method for Highly Sensitive Semiconductor Gas Sensors. ACS Applied Materials & Interfaces, 2012, 4, 4231-4236.	4.0	52
98	Extension of receptor function theory to include two types of adsorbed oxygen for oxide semiconductor gas sensors. Sensors and Actuators B: Chemical, 2012, 163, 128-135.	4.0	66
99	Preparation and measurement of standard organic gases using a diffusion method and a NASICON-based CO2 sensor combined with a combustion catalyst. Analytical Methods, 2011, 3, 1887.	1.3	4
100	Semiconductor gas sensor using nano-sized oxide for high-sensitive detection of environment-related gases. , 2011, , .		6
101	High-Performance Oxygen Reduction Catalyst Using Carbon-Supported La-Mn-Based Perovskite-Type Oxide. Electrochemical and Solid-State Letters, 2011, 14, A67.	2.2	30
102	Bi-Functional Oxygen Electrodes Using LaMnO3/LaNiO3 for Rechargeable Metal-Air Batteries. Journal of the Electrochemical Society, 2011, 158, A605.	1.3	56
103	Gas sensor using noble metal-loaded TiO2 nanotubes for detection of large-sized volatile organic compounds. Journal of the Ceramic Society of Japan, 2011, 119, 884-889.	0.5	15
104	Basic approach to the transducer function of oxide semiconductor gas sensors. Sensors and Actuators B: Chemical, 2011, 160, 1352-1362.	4.0	68
105	Electrochemical detection of volatile organic compounds using a Na3Zr2Si2PO12/Bi2Cu0.1V0.9O5.35 heterojunction device. Electrochimica Acta, 2011, 56, 7484-7490.	2.6	25
106	Theoretical approach to the gas response of oxide semiconductor film devices under control of gas diffusion and reaction effects. Sensors and Actuators B: Chemical, 2011, 154, 277-282.	4.0	50
107	Microstructure control of TiO2 nanotubular films for improved VOC sensing. Sensors and Actuators B: Chemical, 2011, 154, 251-256.	4.0	94
108	Explicit formulation for the response of neat oxide semiconductor gas sensor to reducing gas. Sensors and Actuators B: Chemical, 2011, 158, 28-34.	4.0	20

#	Article	IF	CITATIONS
109	The Enhancement of Response Speed by Loading the Noble Metal into the Sensing Layer for FET-Type NO[sub 2] Sensors. Journal of the Electrochemical Society, 2011, 158, J36.	1.3	1
110	Durability of Carbon-Supported La-Mn-Based Perovskite-Type Oxides as Oxygen Reduction Catalysts in Strong Alkaline Solution. Journal of the Electrochemical Society, 2011, 158, A411-A416.	1.3	28
111	CO[sub 2] Sensor Combining an MISiC Capacitor and a Binary Carbonate. Electrochemical and Solid-State Letters, 2011, 14, J4.	2.2	4
112	Combustion-Type H2 Gas Sensor Using a PTC Thermistor Based on Bi, Na-Codoped BaTiO3 as a Transducer. Sensor Letters, 2011, 9, 21-25.	0.4	2
113	Enhanced Gas Sensing Characteristics of Au-Loaded TiO2 Nanotube Sensors. Sensor Letters, 2011, 9, 26-30.	0.4	8
114	Stability and Interfacial Structure of a NASICON-Based CO2 Sensor Fitted with a Solid-Reference Electrode. Sensor Letters, 2011, 9, 288-293.	0.4	7
115	Wet process-preparation of Re-doped WO3 for wide range of NO2 detection. Journal of the Ceramic Society of Japan, 2010, 118, 184-187.	0.5	3
116	High Oxygen Permeation in Ba _{0.95} La _{0.05} FeO _{3-δ} Membranes with Surface Modification. ACS Applied Materials & Interfaces, 2010, 2, 2849-2853.	4.0	32
117	Structural optimization of gas diffusion electrodes loaded with LaMnO3 electrocatalysts. Journal of Applied Electrochemistry, 2010, 40, 675-681.	1.5	7
118	Highâ€Performance Oxygenâ€Permeable Membranes with an Asymmetric Structure Using Ba _{0.95} La _{0.05} FeO _{3â^'<i>δ</i>} Perovskiteâ€Type Oxide. Advanced Materials, 2010, 22, 2367-2370.	11.1	110
119	Oxygen-permeable membranes based on partially B-site substituted BaFe1â^'yMyO3â^'δ (M=Cu or Ni). Journal of Solid State Chemistry, 2010, 183, 2426-2431.	1.4	46
120	Theoretical approach to the rate of response of semiconductor gas sensor. Sensors and Actuators B: Chemical, 2010, 150, 132-140.	4.0	33
121	Microstructure Effect on the Oxygen Permeation through Ba _{0.95} La _{0.05} FeO _{3â^î^} Membranes Fabricated by Different Methods. Journal of the American Ceramic Society, 2010, 93, 2012-2017.	1.9	2
122	Synthesis of monodispersed SnO ₂ nanocrystals and their remarkably high sensitivity to volatile organic compounds. Chemistry of Materials, 2010, 22, 2662-2667.	3.2	128
123	Application of a Solid Electrolyte CO ₂ Sensor for the Analysis of Standard Volatile Organic Compound Gases. Analytical Chemistry, 2010, 82, 3315-3319.	3.2	19
124	Control of Electrode Reactions in a Mixed-Potential-Type Gas Sensor Based on a BiCuVOx Solid Electrolyte. Journal of Physical Chemistry C, 2010, 114, 15141-15148.	1.5	17
125	Receptor Function and Response of Semiconductor Gas Sensor. Journal of Sensors, 2009, 2009, 1-21.	0.6	120
126	Glass-Coated Mixed Conducting Cobaltites as Solid-Reference Electrode Materials for NASICON-Based Potentiometric CO[sub 2] Sensors, Journal of the Electrochemical Society, 2009, 156, 1351.	1.3	6

#	Article	IF	CITATIONS
127	Oxygen Permeation Properties of Co-Free Perovskite-Type Oxide Membranes Based on BaFe[sub 1â~'y]Zr[sub y]O[sub 3â~Î]. Journal of the Electrochemical Society, 2009, 156, E81.	1.3	71
128	Detection of organic gases using TiO2 nanotube-based gas sensors. Procedia Chemistry, 2009, 1, 192-195.	0.7	37
129	Gas Response of Oxide Semiconductor Film Devices under Control of Diffusion and Reaction Effects. Procedia Chemistry, 2009, 1, 658-661.	0.7	1
130	Highly sensitive NO2 sensors using lamellar-structured WO3 particles prepared by an acidification method. Sensors and Actuators B: Chemical, 2009, 135, 568-574.	4.0	147
131	Cas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubesa~†. Sensors and Actuators B: Chemical, 2009, 137, 513-520.	4.0	238
132	Receptor function of small semiconductor crystals with clean and electron-traps dispersed surfaces. Thin Solid Films, 2009, 517, 6148-6155.	0.8	33
133	Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor. Sensors and Actuators B: Chemical, 2009, 136, 99-104.	4.0	122
134	Planar-type BiCuVOx solid electrolyte sensor for the detection of volatile organic compounds. Sensors and Actuators B: Chemical, 2009, 137, 147-153.	4.0	15
135	New perspectives of gas sensor technology. Sensors and Actuators B: Chemical, 2009, 138, 100-107.	4.0	358
136	Microstructure control of WO3 film by adding nano-particles of SnO2 for NO2 detection in ppb level. Procedia Chemistry, 2009, 1, 212-215.	0.7	10
137	Photoinduced Recovery of Gold Using an Inorganic/Organic Hybrid Photocatalyst. Journal of Physical Chemistry C, 2009, 113, 19986-19993.	1.5	13
138	Oxygen Permeation Properties of Partially A-Site Substituted BaFeO[sub 3â^î] Perovskites. Journal of the Electrochemical Society, 2009, 156, E187.	1.3	82
139	Oxygen Permeation of a Dense/Porous Asymmetric Membrane Using La0.6Ca0.4CoO3â^îſ–BaFe0.975Zr0.025O3â^îſ System. Chemistry Letters, 2009, 38, 94-95.	0.7	12
140	Preparation of metal-loaded oxide nanoparticles for gas sensor applications. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2009, 17, 116-121.	0.0	0
141	Preparation of oxygen evolution layer/La0.6Ca0.4CoO3 dense membrane/porous support asymmetric structure for high-performance oxygen permeation. Solid State Ionics, 2008, 179, 1377-1381.	1.3	47
142	Theory of power laws for semiconductor gas sensors. Sensors and Actuators B: Chemical, 2008, 128, 566-573.	4.0	596
143	Study on the response and recovery properties of semiconductor gas sensors using a high-speed gas-switching system. Sensors and Actuators B: Chemical, 2008, 134, 928-933.	4.0	50
144	Effect of preparation routes on the catalytic activity over SmFeO3 oxide. Catalysis Today, 2008, 139, 125-129.	2.2	32

#	Article	IF	CITATIONS
145	Organic gas sensor using BiCuVOx solid electrolyte. Electrochemistry Communications, 2008, 10, 311-314.	2.3	14
146	Dense/Porous Asymmetric-Structured Oxygen Permeable Membranes Based on La _{0.6} Ca _{0.4} CoO ₃ Perovskite-Type Oxide. Chemistry of Materials, 2008, 20, 6965-6973.	3.2	39
147	Roles of Shape and Size of Component Crystals in Semiconductor Gas Sensors. Journal of the Electrochemical Society, 2008, 155, J85.	1.3	139
148	Roles of Shape and Size of Component Crystals in Semiconductor Gas Sensors. Journal of the Electrochemical Society, 2008, 155, J93.	1.3	98
149	Planar NASICON-Based CO[sub 2] Sensor Using BiCuVO[sub x]/Perovskite–Type Oxide as a Solid-Reference Electrode. Journal of the Electrochemical Society, 2008, 155, J117.	1.3	20
150	Exploration of New Sensing Electrode Materials for FET-type NOx Sensors with Fast Response. Sensor Letters, 2008, 6, 912-915.	0.4	2
151	A Stable Solid-Reference Electrode of BiCuVOx/Perovskite-Oxide for Potentiometric Solid Electrolyte CO2 Sensor. Journal of the Ceramic Society of Japan, 2007, 115, 706-711.	0.5	11
152	Preparation of carbon-supported nano-sized LaMnO3 using reverse micelle method for energy-saving oxygen reduction cathode. Catalysis Today, 2007, 126, 313-319.	2.2	27
153	Contribution of electron tunneling transport in semiconductor gas sensor. Thin Solid Films, 2007, 515, 8302-8309.	0.8	67
154	Characteristics of TiO2Nanotube Gas Sensor Preparedby Hydrothermal Treatment. Korean Journal of Materials Research, 2007, 17, 437-441.	0.1	1
155	Thermal Stability and Mechanical Properties for Ceramic Composite Films Coated on Steel by Wet Process. Journal of the Ceramic Society of Japan, 2006, 114, 189-194.	1.3	1
156	Influence of Reduction Treatment on CO Sensing Properties of SnO2-based Gas Sensor. Electrochemistry, 2006, 74, 183-185.	0.6	3
157	Addition of Alkali Silicate to Grain Size-Controlled Ceramic Coatings for Dense Film. Journal of the Ceramic Society of Japan, 2006, 114, 308-312.	1.3	0
158	STM observation of SnO2 (110) thermal-treated under oxidative condition. Sensors and Actuators B: Chemical, 2006, 118, 90-93.	4.0	7
159	Cathodoluminescence study of SnO2 powders aimed for gas sensor applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 130, 200-205.	1.7	15
160	Densification of SiO2–Al2O3–TiO2 based ceramic film coated on steel for high thermal stabilty and mechanical properties. Surface and Coatings Technology, 2006, 201, 880-885.	2.2	15
161	New approach towards preparation of efficient gas diffusion-type oxygen reduction electrode. Journal of Materials Science, 2006, 41, 6215-6220.	1.7	9
162	Spectroscopic insights into CO sensing of undoped and palladium doped tin dioxide sensors derived from hydrothermally treated tin oxide sol. Sensors and Actuators B: Chemical, 2006, 118, 98-104.	4.0	60

#	Article	IF	CITATIONS
163	C2H4O sensing properties for thick film sensor using La2O3-modified SnO2. Sensors and Actuators B: Chemical, 2006, 118, 171-176.	4.0	39
164	Preparation of PZT Thin Film by Zirconium Oxyacetate-Based Chemical Solution Deposition: Investigation for Structure of Bottom Electrode and Effect of Excessive Pb. Journal of the Ceramic Society of Japan, 2005, 113, 297-302.	1.3	1
165	Behavior of oxygen concentration cells using BiCuVOx oxide-ion conductor. Sensors and Actuators B: Chemical, 2005, 108, 335-340.	4.0	13
166	Influences of ball-milling time on gas-sensing properties of Co3O4–SnO2 composites. Sensors and Actuators B: Chemical, 2005, 107, 516-522.	4.0	35
167	Improvement of warming-up characteristics of potentiometric CO2 sensor by using solid reference counter electrode. Sensors and Actuators B: Chemical, 2005, 108, 364-367.	4.0	12
168	Capacitive-type gas sensors combining silicon semiconductor and NaNO2-based solid electrolyte for NO2 detection. Sensors and Actuators B: Chemical, 2005, 109, 300-306.	4.0	7
169	Preparation of BiMeVOx (Me=Cu, Ti, Zr, Nb, Ta) compounds as solid electrolyte and behavior of their oxygen concentration cells. Sensors and Actuators B: Chemical, 2005, 109, 307-314.	4.0	29
170	NASICON-based potentiometric CO2 sensor combined with new materials operative at room temperature. Sensors and Actuators B: Chemical, 2005, 108, 352-358.	4.0	17
171	Transition metals (Co, Cu) as additives on hydrothermally treated Tio2 for gas sensing. Sensors and Actuators B: Chemical, 2005, 109, 7-12.	4.0	51
172	Water–oxygen interplay on tin dioxide surface: Implication on gas sensing. Chemical Physics Letters, 2005, 410, 321-323.	1.2	160
173	Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size. Sensors and Actuators B: Chemical, 2005, 105, 437-442.	4.0	89
174	Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sensors and Actuators B: Chemical, 2005, 108, 34-40.	4.0	106
175	Sensing properties of Au-loaded SnO2–Co3O4 composites to CO and H2. Sensors and Actuators B: Chemical, 2005, 107, 397-401.	4.0	72
176	Development of SnO2-based gas sensor sensitive to dilute ethylene oxide in air. Sensors and Actuators B: Chemical, 2005, 108, 130-133.	4.0	15
177	A new capacitive-type NO2 gas sensor combining an MIS with a solid electrolyte. Sensors and Actuators B: Chemical, 2005, 109, 216-220.	4.0	33
178	Oxygen Reduction Property of Ultrafine LaMnO[sub 3] Dispersed on Carbon Support. Electrochemical and Solid-State Letters, 2005, 8, A270.	2.2	9
179	Nanotubular SnO2Templated by Cellulose Fibers: Synthesis and Gas Sensing. Chemistry of Materials, 2005, 17, 3513-3518.	3.2	267
180	Sensing properties of SnO2–Co3O4 composites to CO and H2. Sensors and Actuators B: Chemical, 2004, 98, 166-173.	4.0	117

#	Article	IF	CITATIONS
181	Microstructure control of thermally stable TiO2 obtained by hydrothermal process for gas sensors. Sensors and Actuators B: Chemical, 2004, 103, 312-317.	4.0	98
182	Development of FET-type CO2 sensor operative at room temperature. Sensors and Actuators B: Chemical, 2004, 102, 14-19.	4.0	16
183	Wet process-based fabrication of WO3 thin film for NO2 detection. Sensors and Actuators B: Chemical, 2004, 101, 107-111.	4.0	56
184	Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application. Sensors and Actuators B: Chemical, 2004, 103, 386-391.	4.0	82
185	Reverse Micelle Assisted Dispersion of Lanthanum Manganite on Carbon Support for Oxygen Reduction Cathode. Journal of the Electrochemical Society, 2004, 151, A158.	1.3	35
186	Exploration of Reverse Micelle Synthesis of Carbon-Supported LaMnO[sub 3]. Journal of the Electrochemical Society, 2004, 151, A1477.	1.3	17
187	Reverse Micelle-Based Preparation of Carbon-Supported La[sub 1â~x]Sr[sub x]Mn[sub 1â~y]Fe[sub y]O[sub 3+î] for Oxygen Reduction Electrode. Journal of the Electrochemical Society, 2004, 151, A1690.	1.3	19
188	Preparation of Carbon-Supported Perovskite-Type Oxides LaMn[sub 1â^'y]Fe[sub y]O[sub 3+Î] Based on Reverse Homogeneous Precipitation Method. Journal of the Electrochemical Society, 2004, 151, A1559.	1.3	26
189	Oxide Semiconductor Gas Sensors. Catalysis Surveys From Asia, 2003, 7, 63-75.	1.0	1,113
190	Influences of water vapor on NASICON-based CO2 sensor operative at room temperature. Sensors and Actuators B: Chemical, 2003, 93, 243-249.	4.0	13
191	Wet process-prepared thick films of WO3 for NO2 sensing. Sensors and Actuators B: Chemical, 2003, 95, 258-265.	4.0	58
192	Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction–diffusion equation. Sensors and Actuators B: Chemical, 2003, 96, 226-233.	4.0	81
193	Fabrication of CO2 sensor using NASICON thick film. Sensors and Actuators B: Chemical, 2003, 93, 250-256.	4.0	34
194	Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sensors and Actuators B: Chemical, 2003, 93, 509-518.	4.0	241
195	Preparation of size and habit-controlled nano crystallites of tungsten oxide. Sensors and Actuators B: Chemical, 2003, 93, 486-494.	4.0	40
196	NASICON-based CO ₂ Sensor Operative at Room Temperature Using Li ₂ CO ₃ -BaCO ₃ Auxiliary Phase. Electrochemistry, 2003, 71, 496-502.	0.6	3
197	NO ₂ Sensing Properties of WO ₃ Gate-fitted FET Device. Electrochemistry, 2003, 71, 503-507.	0.6	4
198	Influences of A-site Partial Substitution for BaCo0.7Fe0.3O3Oxide on Perovskite Structure and Oxygen Permeability. Chemistry Letters, 2002, 31, 344-345.	0.7	6

#	Article	IF	CITATIONS
199	High Temperature PTC Thermistor Using Ba Cobaltite. Chemistry Letters, 2002, 31, 412-413.	0.7	0
200	Preparation of Cr-Doped TiO2Thin Film of P-type Conduction for Gas Sensor Application. Chemistry Letters, 2002, 31, 892-893.	0.7	41
201	Preparation of aqueous sols of tungsten oxide dihydrate from sodium tungstate by an ion-exchange method. Sensors and Actuators B: Chemical, 2002, 87, 63-72.	4.0	62
202	Diffusion equation-based study of thin film semiconductor gas sensor-response transient. Sensors and Actuators B: Chemical, 2002, 83, 216-221.	4.0	88
203	Temperature-swing based oxygen enrichment by using perovskite-type oxides. Journal of Materials Science Letters, 2002, 21, 407-409.	0.5	10
204	Mixed-potential type N2O sensor using stabilized zirconia- and SnO2-based sensing electrode. Sensors and Actuators B: Chemical, 2001, 75, 121-124.	4.0	21
205	Stability of NASICON-based CO2 sensor under humid conditions at low temperature. Sensors and Actuators B: Chemical, 2001, 75, 179-187.	4.0	56
206	Metal oxide semiconductor N2O sensor for medical use. Sensors and Actuators B: Chemical, 2001, 77, 72-77.	4.0	128
207	Reaction analysis on sensing electrode of amperometric NO2 sensor based on sodium ion conductor by using chronopotentiometry. Sensors and Actuators B: Chemical, 2001, 77, 78-83.	4.0	12
208	Field effect transistor type NO2 sensor combined with NaNO2 auxiliary phase. Sensors and Actuators B: Chemical, 2001, 77, 512-516.	4.0	15
209	NASICON thick film-based CO2 sensor prepared by a sol–gel method. Sensors and Actuators B: Chemical, 2001, 80, 28-32.	4.0	79
210	Potentiometric sensor based on NASICON and In2O3 for detection of CO2 at room temperature — modification with foreign substances. Sensors and Actuators B: Chemical, 2001, 76, 639-643.	4.0	31
211	Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sensors and Actuators B: Chemical, 2001, 80, 125-131.	4.0	558
212	Synthesis of Manganite Perovskites by Reverse Homogeneous Precipitation Method in the Presence of Alkylammonium Cations. Chemistry Letters, 2000, 29, 1202-1203.	0.7	42
213	Mixed-potential-type propylene sensor based on stabilized zirconia and oxide electrode. Electrochemistry Communications, 2000, 2, 77-80.	2.3	58
214	Spin-coated indium oxide thin film on alumina and silicon substrates and their gas sensing properties. Sensors and Actuators B: Chemical, 2000, 65, 312-315.	4.0	19
215	Interfacial structure of NASICON-based sensor attached with Li2CO3â^'CaCO3 auxiliary phase for detection of CO2. Solid State Ionics, 2000, 136-137, 647-653.	1.3	28
216	Amperometric sensor based on NASICON and NO oxidation catalysts for detection of total NOx in atmospheric environment. Solid State Ionics, 2000, 136-137, 583-588.	1.3	31

#	Article	IF	CITATIONS
217	Hydrothermal treatment of tin oxide sol solution for preparation of thin-film sensor with enhanced thermal stability and gas sensitivity. Sensors and Actuators B: Chemical, 2000, 65, 97-100.	4.0	80
218	Solid-State Amperometric Sensor Based on a Sodium Ion Conductor for Detection of Total NO[sub x] in an Atmospheric Environment. Electrochemical and Solid-State Letters, 1999, 2, 349.	2.2	8
219	Sensing Properties and Interfacial Structure of Solid Electrolyte CO ₂ Sensor Attached with Na ₂ CO ₃ -based Auxiliary Phase. Electrochemistry, 1999, 67, 1258-1261.	0.6	3
220	A compact amperometric NO2 sensor based on Na+ conductive solid electrolyte. Journal of Applied Electrochemistry, 1998, 28, 863-865.	1.5	15
221	Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties. Sensors and Actuators B: Chemical, 1998, 46, 139-145.	4.0	119
222	A compact solid-state amperometric sensor for detection of NO2 in ppb range. Sensors and Actuators B: Chemical, 1998, 49, 101-109.	4.0	52
223	Dilute hydrogen sulfide sensing properties of CuO–SnO2 thin film prepared by low-pressure evaporation method. Sensors and Actuators B: Chemical, 1998, 49, 121-125.	4.0	212
224	Gas Sensing Properties of Indium Oxide Thin Film on Silicon Substrate Prepared by Spin-Coating Method. Japanese Journal of Applied Physics, 1998, 37, 4994-4998.	0.8	6
225	Accuracy of Total Reflection X-Ray Fluorescence Spectrometry near the Detection Limit Analytical Sciences, 1998, 14, 275-280.	0.8	10
226	A depth profile fitting model for a commercial total reflection X-ray fluorescence spectrometer. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1997, 52, 823-828.	1.5	5
227	Spin-coated thin films of SiO2–WO3 composites for detection of sub-ppm NO2. Sensors and Actuators B: Chemical, 1997, 45, 141-146.	4.0	62
228	Standard Sample Preparation for the Analysis of Several Metals on Silicon Wafer. Analytical Sciences, 1996, 12, 141-143.	0.8	13
229	Study of Depth Distribution Shift of Copper on Silicon Wafer Surface Using Total Reflection X-Ray Fluorescence Spectrometry. Analytical Sciences, 1996, 12, 277-279.	0.8	9
230	A Standard Sample Preparation Method for the Determination of Metal Impurities on a Silicon Wafer by Total Reflection X-Ray Fluorescence Spectrometryt. Analytical Sciences, 1995, 11, 499-504.	0.8	27
231	Adsorption Species of Transition Metal lons on Silicon Wafer in SCâ \in I Solution. Journal of the Electrochemical Society, 1995, 142, 3104-3109.	1.3	38
232	Electrical Properties of Langmuir-Blodgett Passivation Film for Hg1-xCdxTe. Japanese Journal of Applied Physics, 1993, 32, 1064-1067.	0.8	1
233	Anodic Oxides on Hg1-xCdxTe Studied Using Angle and X-Ray Power-Dependent X-Ray Photoelectron Spectroscopy. Japanese Journal of Applied Physics, 1992, 31, 2066-2070.	0.8	4
234	Hg1-xCdxTe Surface after Chemical Etching and Electrochemical Reduction. Japanese Journal of Applied Physics, 1991, 30, 2723-2729.	0.8	7

#	Article	IF	CITATIONS
235	Simultaneous Catalytic Removal of NO and SO2over Pt/ZSM-5 and V2O5–MoO3/TiO2Catalysts. Chemistry Letters, 1987, 16, 2047-2050.	0.7	5
236	Effect of Annealing Atmosphere on Oxygen Diffusion through Ba-Fe-Based Perovskite Oxide. Key Engineering Materials, 0, 485, 141-144.	0.4	1
237	Stabilization of Counter Electrode for Nasicon Based Potentiometric Co2 Sensor. Ceramic Engineering and Science Proceedings, 0, , 471-476.	0.1	4
238	Microstructural Control of Sno2 Thin Films by Using Polyethylene Glycol-Mixed Sols. Ceramic Engineering and Science Proceedings, 0, , 477-482.	0.1	1
239	Ultrasensitive Gas Sensor Using Co3O4-Modified SnO2. Ceramic Engineering and Science Proceedings, 0, , 101-106.	0.1	4