Chang-Kyu Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/641594/publications.pdf

Version: 2024-02-01

471509 454955 1,091 66 17 30 citations h-index g-index papers 70 70 70 1485 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Trends in safety management of cultured meat and their potential considerations. Food and Life, 2022, 2022, 1-8.	0.5	3
2	Linoleic acid reduces apoptosis via NF-κB during the inÂvitro development of induced parthenogenic porcine embryos. Theriogenology, 2022, 187, 173-181.	2.1	7
3	Species-Specific Enhancer Activity of OCT4 in Porcine Pluripotency: The Porcine OCT4 Reporter System Could Monitor Pluripotency in Porcine Embryo Development and Embryonic Stem Cells. Stem Cells International, 2022, 2022, 1-18.	2.5	2
4	Muscle stem cell isolation and <i>in vitro</i> culture for meat production: A methodological review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 429-457.	11.7	70
5	Genetic Defects in DNAH2 Underlie Male Infertility With Multiple Morphological Abnormalities of the Sperm Flagella in Humans and Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 662903.	3.7	22
6	Combination of cell signaling molecules can facilitate MYOD1-mediated myogenic transdifferentiation of pig fibroblasts. Journal of Animal Science and Biotechnology, 2021, 12, 64.	5 . 3	6
7	Porcine <i>OCT4</i> Reporter System Can Monitor Species-Specific Pluripotency During Somatic Cell Reprogramming. Cellular Reprogramming, 2021, 23, 168-179.	0.9	5
8	SOX2 plays a crucial role in cell proliferation and lineage segregation during porcine preâ€implantation embryo development. Cell Proliferation, 2021, 54, e13097.	5 . 3	12
9	Technical requirements for cultured meat production: a review. Journal of Animal Science and Technology, 2021, 63, 681-692.	2.5	14
10	Pig embryonic stem cell line with porcine-specific OCT4 upstream region based dual reporter system. Stem Cell Research, 2021, 57, 102609.	0.7	3
11	Porcine OCT4 reporter system as a tool for monitoring pluripotency states. Journal of Animal Reproduciton and Biotechnology, 2021, 36, 175-182.	0.6	1
12	Identification of the Lineage Markers and Inhibition of DAB2 in In Vitro Fertilized Porcine Embryos. International Journal of Molecular Sciences, 2020, 21, 7275.	4.1	7
13	Pluripotent pig embryonic stem cell lines originating from in vitro-fertilized and parthenogenetic embryos. Stem Cell Research, 2020, 49, 102093.	0.7	9
14	MicroRNA expression data of pluripotent and somatic cells and identification of cell type-specific MicroRNAs in pigs. Data in Brief, 2020, 33, 106563.	1.0	0
15	Transcriptome profiling of pluripotent pig embryonic stem cells originating from uni- and biparental embryos. BMC Research Notes, 2020, 13, 144.	1.4	3
16	Progesterone receptor membrane component 1 (PGRMC1)-mediated progesterone effect on preimplantation development of inÂvitro produced porcine embryos. Theriogenology, 2020, 147, 39-49.	2.1	3
17	Generation of Neural Progenitor Cells from Pig Embryonic Germ Cells. Journal of Animal Reproduciton and Biotechnology, 2020, 35, 42-49.	0.6	7
18	Optimization of Culture Conditions for Maintaining Pig Muscle Stem Cells In Vitro. Food Science of Animal Resources, 2020, 40, 659-667.	4.1	16

#	Article	IF	CITATIONS
19	Purification of Pig Muscle Stem Cells Using Magnetic-Activated Cell Sorting (MACS) Based on the Expression of Cluster of Differentiation 29 (CD29). Food Science of Animal Resources, 2020, 40, 852-859.	4.1	12
20	Chemically Defined Media Can Maintain Pig Pluripotency Network InÂVitro. Stem Cell Reports, 2019, 13, 221-234.	4.8	59
21	Identification and Characterization of the <i>OCT4</i> Upstream Regulatory Region in <i>Sus scrofa</i> . Stem Cells International, 2019, 2019, 1-11.	2.5	5
22	17Î ² -Estradiol protects mesenchymal stem cells against high glucose-induced mitochondrial oxidants production via Nrf2/Sirt3/MnSOD signaling. Free Radical Biology and Medicine, 2019, 130, 328-342.	2.9	63
23	Pig Pluripotent Stem Cells as a Candidate for Biomedical Application. Journal of Animal Reproduciton and Biotechnology, 2019, 34, 139-147.	0.6	14
24	Stearoyl-coenzyme A desaturase 1 is required for lipid droplet formation in pig embryo. Reproduction, 2019, 157, 235-243.	2.6	15
25	High Glucose-Induced Reactive Oxygen Species Stimulates Human Mesenchymal Stem Cell Migration Through Snail and EZH2-Dependent E-Cadherin Repression. Cellular Physiology and Biochemistry, 2018, 46, 1749-1767.	1.6	13
26	Attempting to Convert Primed Porcine Embryonic Stem Cells into a Naive State Through the Overexpression of Reprogramming Factors. Cellular Reprogramming, 2018, 20, 289-300.	0.9	2
27	FGF2 Signaling Plays an Important Role in Maintaining Pluripotent State of Pig Embryonic Germ Cells. Cellular Reprogramming, 2018, 20, 301-311.	0.9	4
28	Modulation of sonic hedgehogâ€induced mouse embryonic stem cell behaviours through Eâ€cadherin expression and integrin β1â€dependent Fâ€actin formation. British Journal of Pharmacology, 2018, 175, 3548-3562.	5 . 4	9
29	Multi-resistance strategy for viral diseases and in vitro short hairpin RNA verification method in pigs. Asian-Australasian Journal of Animal Sciences, 2018, 31, 489-498.	2.4	11
30	Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecific Chimera. Stem Cell Reports, 2017, 9, 1706-1720.	4.8	30
31	Ultrastructural comparison of porcine putative embryonic stem cells derived by <i>in vitro</i> fertilization and somatic cell nuclear transfer. Journal of Reproduction and Development, 2016, 62, 177-185.	1.4	3
32	Reactivation of Endogenous Genes and Epigenetic Remodeling Are Barriers for Generating Transgene-Free Induced Pluripotent Stem Cells in Pig. PLoS ONE, 2016, 11, e0158046.	2.5	24
33	Ginsenoside Rg1 Improves <i>In vitro</i> -produced Embryo Quality by Increasing Glucose Uptake in Porcine Blastocysts. Asian-Australasian Journal of Animal Sciences, 2016, 29, 1095-1101.	2.4	5
34	Aggregation of cloned embryos in empty zona pellucida improves derivation efficiency of pig ES-like cells. Zygote, 2016, 24, 909-917.	1,1	8
35	Treatment of aromatase (CYP19A1) inhibitor reduces fertility in porcine sperm. Zygote, 2016, 24, 98-106.	1.1	5
36	Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology, 2016, 85, 601-616.	2.1	19

#	Article	IF	CITATIONS
37	Complete genome sequence and SNPs of Raja pulchra (Rajiformes, Rajidae) mitochondria. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 2975-2977.	0.7	1
38	An Improved System for Generation of Diploid Cloned Porcine Embryos Using Induced Pluripotent Stem Cells Synchronized to Metaphase. PLoS ONE, 2016, 11, e0160289.	2.5	4
39	Data for identification of porcine X-chromosome inactivation center, XIC, by genomic comparison with human and mouse XIC. Data in Brief, 2015, 5, 1072-1077.	1.0	1
40	Analysis of Stage-Specific Gene Expression Profiles in the Uterine Endometrium during Pregnancy in Pigs. PLoS ONE, 2015, 10, e0143436.	2.5	20
41	Embryo Aggregation Promotes Derivation Efficiency of Outgrowths from Porcine Blastocysts. Asian-Australasian Journal of Animal Sciences, 2015, 28, 1565-1572.	2.4	2
42	Bisphenol A and Nonylphenol Have the Potential to Stimulate the Migration of Ovarian Cancer Cells by Inducing Epithelial–Mesenchymal Transition via an Estrogen Receptor Dependent Pathway. Chemical Research in Toxicology, 2015, 28, 662-671.	3.3	69
43	Identification and differential expression patterns of porcine OCT4 variants. Reproduction, 2015, 149, 55-66.	2.6	6
44	Dosage compensation of X-chromosome inactivation center-linked genes in porcine preimplantation embryos: Non-chromosome-wide initiation of X-chromosome inactivation in blastocysts. Mechanisms of Development, 2015, 138, 246-255.	1.7	14
45	Comparative genomic analysis of mitochondrial protein-coding genes in Veneroida clams: Analysis of superfamily-specific genomic and evolutionary features. Marine Genomics, 2015, 24, 329-334.	1.1	3
46	Overexpression of <i>OCT4A</i> ortholog elevates endogenous <i>XIST</i> in porcine parthenogenic blastocysts. Journal of Reproduction and Development, 2015, 61, 533-540.	1.4	1
47	Availability of Empty Zona Pellucida for Generating Embryonic Chimeras. PLoS ONE, 2015, 10, e0123178.	2.5	3
48	Amino Acid Supplementation Affects Imprinted Gene Transcription Patterns in Parthenogenetic Porcine Blastocysts. PLoS ONE, 2014, 9, e106549.	2.5	5
49	Analysis of imprinted IGF2/H19 gene methylation and expression in normal fertilized and parthenogenetic embryonic stem cells of pigs. Animal Reproduction Science, 2014, 147, 47-55.	1.5	5
50	Investigation of De Novo Unique Differentially Expressed Genes Related to Evolution in Exercise Response during Domestication in Thoroughbred Race Horses. PLoS ONE, 2014, 9, e91418.	2.5	20
51	Copy Number Deletion Has Little Impact on Gene Expression Levels in Racehorses. Asian-Australasian Journal of Animal Sciences, 2014, 27, 1345-1354.	2.4	5
52	"Smart―microspheres for self-renewal of embryonic stem cells. Macromolecular Research, 2013, 21, 134-136.	2.4	3
53	Quantitative analysis of sperm mRNA in the pig: relationship with early embryo development and capacitation. Reproduction, Fertility and Development, 2013, 25, 807.	0.4	34
54	Primed Pluripotent Cell Lines Derived from Various Embryonic Origins and Somatic Cells in Pig. PLoS ONE, 2013, 8, e52481.	2.5	64

#	Article	IF	CITATION
55	Epigenetic Changes of Lentiviral Transgenes in Porcine Stem Cells Derived from Embryonic Origin. PLoS ONE, 2013, 8, e72184.	2.5	10
56	Identification of the Porcine XIST Gene and Its Differential CpG Methylation Status in Male and Female Pig Cells. PLoS ONE, 2013, 8, e73677.	2.5	9
57	X-Linked Gene Transcription Patterns in Female and Male In Vivo, In Vitro and Cloned Porcine Individual Blastocysts. PLoS ONE, 2012, 7, e51398.	2.5	26
58	Microarray Analysis of Gene Expression in the Uterine Endometrium during the Implantation Period in Pigs. Asian-Australasian Journal of Animal Sciences, 2012, 25, 1102-1116.	2.4	20
59	Analysis of Imprinted Gene Expression in Normal Fertilized and Uniparental Preimplantation Porcine Embryos. PLoS ONE, 2011, 6, e22216.	2.5	47
60	Enzymatic biosynthesis of a puerarin–cycloamylose inclusion complex by 4-α-glucanotransferase and maltogenic amylase. Biocatalysis and Biotransformation, 2010, 28, 209-214.	2.0	3
61	Methylation status of differentially methylated regions at Igf2/H19 locus in porcine gametes and preimplantation embryos. Genomics, 2009, 93, 179-186.	2.9	46
62	A modified swim-up method reduces polyspermy during in vitro fertilization of porcine oocytes. Animal Reproduction Science, 2009, 115, 169-181.	1.5	34
63	Development of vitrified–thawed bovine oocytes after in vitro fertilization and somatic cell nuclear transfer. Animal Reproduction Science, 2008, 103, 25-37.	1.5	21
64	Enzymatic Synthesis and Properties of Highly Branched Rice Starch Amylose and Amylopectin Cluster. Journal of Agricultural and Food Chemistry, 2008, 56, 126-131.	5.2	90
65	Derivation of Porcine Embryonic Stem Cells from the Aggregation of In Vitro-Fertilized Embryos Biology of Reproduction, 2008, 78, 155-155.	2.7	0
66	In vitro development and cell allocation of porcine blastocysts derived by aggregation of in vitro fertilized embryos. Molecular Reproduction and Development, 2007, 74, 1436-1445.	2.0	33