Zhenguo Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6415511/publications.pdf

Version: 2024-02-01

36 1,829 18 34
papers citations h-index g-index

44 44 2960
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10328-10333.	3.3	268
2	The WRKY Transcription Factor Family in Model Plants and Crops. Critical Reviews in Plant Sciences, 2017, 36, 311-335.	2.7	231
3	Origin and Evolution of the 2019 Novel Coronavirus. Clinical Infectious Diseases, 2020, 71, 882-883.	2.9	168
4	Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Research, 2019, 47, e130-e130.	6.5	124
5	The Sequenced Angiosperm Genomes and Genome Databases. Frontiers in Plant Science, 2018, 9, 418.	1.7	110
6	Genome sequences of horticultural plants: past, present, and future. Horticulture Research, 2019, 6, 112.	2.9	108
7	The origins and early evolution of DNA mismatch repair genes—multiple horizontal gene transfers and co-evolution. Nucleic Acids Research, 2007, 35, 7591-7603.	6.5	94
8	The AtRAD51C Gene Is Required for Normal Meiotic Chromosome Synapsis and Double-Stranded Break Repair in Arabidopsis. Plant Physiology, 2005, 138, 965-976.	2.3	90
9	Expansion of Hexose Transporter Genes Was Associated with the Evolution of Aerobic Fermentation in Yeasts. Molecular Biology and Evolution, 2011, 28, 131-142.	3.5	82
10	Pervasive and dynamic transcription initiation in <i>Saccharomyces cerevisiae</i> . Genome Research, 2019, 29, 1198-1210.	2.4	53
11	Effects of nitrogen metabolism on growth and aflatoxin biosynthesis in Aspergillus flavus. Journal of Hazardous Materials, 2017, 324, 691-700.	6.5	49
12	Evolution of 5' Untranslated Region Length and Gene Expression Reprogramming in Yeasts. Molecular Biology and Evolution, 2012, 29, 81-89.	3.5	48
13	Origin and mechanism of crassulacean acid metabolism in orchids as implied by comparative transcriptomics and genomics of the carbon fixation pathway. Plant Journal, 2016, 86, 175-185.	2.8	45
14	The spatial distribution of cis regulatory elements in yeast promoters and its implications for transcriptional regulation. BMC Genomics, 2010, 11, 581.	1.2	42
15	YeasTSS: an integrative web database of yeast transcription start sites. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	34
16	Genomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation. Genome Biology and Evolution, 2014, 6, 2516-2526.	1.1	28
17	Phylogenetic detection of numerous gene duplications shared by animals, fungi and plants. Genome Biology, 2010, 11, R38.	13.9	20
18	Detecting positive selection in the budding yeast genome. Journal of Evolutionary Biology, 2009, 22, 2430-2437.	0.8	19

#	Article	IF	CITATIONS
19	The origin and evolution of a distinct mechanism of transcription initiation in yeasts. Genome Research, 2021, 31, 51-63.	2.4	18
20	Ultraconserved coding regions outside the homeobox of mammalian Hox genes. BMC Evolutionary Biology, 2008, 8, 260.	3.2	17
21	Heterogeneous rates of genome rearrangement contributed to the disparity of species richness in Ascomycota. BMC Genomics, 2018, 19, 282.	1.2	17
22	Comparative analysis of somatic copy-number alterations across different human cancer types reveals two distinct classes of breakpoint hotspots. Human Molecular Genetics, 2012, 21, 4957-4965.	1.4	15
23	Evolution After Whole-Genome Duplication: A Network Perspective. G3: Genes, Genomes, Genetics, 2013, 3, 2049-2057.	0.8	15
24	Mitochondrial Genome Variation Affects Multiple Respiration and Nonrespiration Phenotypes in <i>Saccharomyces cerevisiae</i> . Genetics, 2019, 211, 773-786.	1.2	15
25	Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts. Genome Biology and Evolution, 2013, 5, 1065-1078.	1.1	14
26	Parallel Concerted Evolution of Ribosomal Protein Genes in Fungi and Its Adaptive Significance. Molecular Biology and Evolution, 2020, 37, 455-468.	3.5	14
27	The Evolution of Aerobic Fermentation in Schizosaccharomyces pombe Was Associated with Regulatory Reprogramming but not Nucleosome Reorganization. Molecular Biology and Evolution, 2011, 28, 1407-1413.	3.5	11
28	Origins and Stepwise Expansion of R2R3-MYB Transcription Factors for the Terrestrial Adaptation of Plants. Frontiers in Plant Science, 2020, 11, 575360.	1.7	11
29	Gap Junction Coding Innexin in Lymnaea stagnalis: Sequence Analysis and Characterization in Tissues and the Central Nervous System. Frontiers in Synaptic Neuroscience, 2020, 12, 1.	1.3	11
30	Development-specific transcriptomic profiling suggests new mechanisms for anoxic survival in the ventricle of overwintering turtles. Journal of Experimental Biology, 2020, 223, .	0.8	9
31	TSSr: an R package for comprehensive analyses of TSS sequencing data. NAR Genomics and Bioinformatics, 2021, 3, lqab108.	1.5	6
32	Transcriptome analysis provides genome annotation and expression profiles in the central nervous system of Lymnaea stagnalis at different ages. BMC Genomics, 2021, 22, 637.	1.2	5
33	Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling. BMC Genomics, 2018, 19, 306.	1.2	4
34	Distinct roles of nucleosome sliding and histone modifications in controlling the fidelity of transcription initiation. RNA Biology, 2021, 18, 1-11.	1.5	1
35	Comparative Genomics and Evolutionary Genetics of Yeast Carbon Metabolism. , 2014, , 97-120.		O
36	Ventricular transcriptomic changes induced by coldâ€acclimation in the painted turtle suggests epigeneticâ€mediated transcriptional remodeling. FASEB Journal, 2019, 33, 726.4.	0.2	0