Hao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6415261/publications.pdf

Version: 2024-02-01

54911 53789 13,999 101 45 84 citations h-index g-index papers 102 102 102 13597 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An Artificial Intelligence System for the Detection of Bladder Cancer via Cystoscopy: A Multicenter Diagnostic Study. Journal of the National Cancer Institute, 2022, 114, 220-227.	6.3	24
2	PDBL: Improving Histopathological Tissue Classification With Plug-and-Play Pyramidal Deep-Broad Learning. IEEE Transactions on Medical Imaging, 2022, 41, 2252-2262.	8.9	20
3	Sample Alignment for Image-to-Image Translation Based Medical Domain Adaptation. , 2022, , .		O
4	Deep Semi-Supervised Metric Learning with Dual Alignment for Cervical Cancer Cell Detection. , 2022, , .		5
5	3-D Rol-Aware U-Net for Accurate and Efficient Colorectal Tumor Segmentation. IEEE Transactions on Cybernetics, 2021, 51, 5397-5408.	9.5	44
6	Transformation-Consistent Self-Ensembling Model for Semisupervised Medical Image Segmentation. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 523-534.	11.3	240
7	Potentials of Al in medical image analysis in Gastroenterology and Hepatology. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 31-38.	2.8	27
8	OXnet: Deep Omni-Supervised Thoracic Disease Detection from Chest X-Rays. Lecture Notes in Computer Science, 2021, , 537-548.	1.3	10
9	Dual-Consistency Semi-supervised Learning with Uncertainty Quantification for COVID-19 Lesion Segmentation from CT Images. Lecture Notes in Computer Science, 2021, , 199-209.	1.3	23
10	Dual-path network with synergistic grouping loss and evidence driven risk stratification for whole slide cervical image analysis. Medical Image Analysis, 2021, 69, 101955.	11.6	28
11	Deep virtual adversarial self-training with consistency regularization for semi-supervised medical image classification. Medical Image Analysis, 2021, 70, 102010.	11.6	57
12	A Multitask Deep-Learning System to Classify Diabetic Macular Edema for Different Optical Coherence Tomography Devices: A Multicenter Analysis. Diabetes Care, 2021, 44, 2078-2088.	8.6	27
13	Development and Evaluation of a Deep Learning Algorithm for Rib Segmentation and Fracture Detection from Multicenter Chest CT Images. Radiology: Artificial Intelligence, 2021, 3, e200248.	5.8	19
14	CD147 deficiency is associated with impaired sperm motility/acrosome reaction and offers a therapeutic target for asthenozoospermia. Molecular Therapy - Nucleic Acids, 2021, 26, 1374-1386.	5.1	6
15	Multi-task recurrent convolutional network with correlation loss for surgical video analysis. Medical Image Analysis, 2020, 59, 101572.	11.6	116
16	Multi-Task Deep Model With Margin Ranking Loss for Lung Nodule Analysis. IEEE Transactions on Medical Imaging, 2020, 39, 718-728.	8.9	80
17	Weakly Supervised Deep Learning for Whole Slide Lung Cancer Image Analysis. IEEE Transactions on Cybernetics, 2020, 50, 3950-3962.	9.5	198
18	A Multi-Organ Nucleus Segmentation Challenge. IEEE Transactions on Medical Imaging, 2020, 39, 1380-1391.	8.9	259

#	Article	IF	CITATIONS
19	Deep multilevel contextual networks for biomedical image segmentation., 2020,, 231-247.		O
20	Automatic lesion detection with three-dimensional convolutional neural networks., 2020,, 265-293.		3
21	Gastric histopathology image segmentation using a hierarchical conditional random field. Biocybernetics and Biomedical Engineering, 2020, 40, 1535-1555.	5.9	35
22	Towards a new generation of artificial intelligence in China. Nature Machine Intelligence, 2020, 2, 312-316.	16.0	90
23	Deep Mining External Imperfect Data for Chest X-Ray Disease Screening. IEEE Transactions on Medical Imaging, 2020, 39, 3583-3594.	8.9	51
24	UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3431-3442.	6.3	47
25	Unsupervised Bidirectional Cross-Modality Adaptation via Deeply Synergistic Image and Feature Alignment for Medical Image Segmentation. IEEE Transactions on Medical Imaging, 2020, 39, 2494-2505.	8.9	230
26	Deep Semi-supervised Knowledge Distillation for Overlapping Cervical Cell Instance Segmentation. Lecture Notes in Computer Science, 2020, , 521-531.	1.3	25
27	Towards multi-center glaucoma OCT image screening with semi-supervised joint structure and function multi-task learning. Medical Image Analysis, 2020, 63, 101695.	11.6	47
28	Rectifying Supporting Regions With Mixed and Active Supervision for Rib Fracture Recognition. IEEE Transactions on Medical Imaging, 2020, 39, 3843-3854.	8.9	17
29	Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. The Lancet Digital Health, 2019, 1, e172-e182.	12.3	97
30	PnP-AdaNet: Plug-and-Play Adversarial Domain Adaptation Network at Unpaired Cross-Modality Cardiac Segmentation. IEEE Access, 2019, 7, 99065-99076.	4.2	124
31	Robust Learning at Noisy Labeled Medical Images: Applied to Skin Lesion Classification. , 2019, , .		56
32	RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification. Medical Image Analysis, 2019, 58, 101549.	11.6	121
33	CIA-Net: Robust Nuclei Instance Segmentation with Contour-Aware Information Aggregation. Lecture Notes in Computer Science, 2019, , 682-693.	1.3	103
34	Expression of cellular apoptosis susceptibility (CAS) in the human testis and testicular germ cell tumors. Medical Oncology, 2019, 36, 61.	2.5	2
35	Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology, 2019, 291, 677-686.	7.3	221
36	Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images. Journal of Magnetic Resonance Imaging, 2019, 50, 1144-1151.	3.4	91

#	Article	IF	CITATIONS
37	From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 550-560.	8.9	269
38	MILD-Net: Minimal information loss dilated network for gland instance segmentation in colon histology images. Medical Image Analysis, 2019, 52, 199-211.	11.6	208
39	Fast ScanNet: Fast and Dense Analysis of Multi-Gigapixel Whole-Slide Images for Cancer Metastasis Detection. IEEE Transactions on Medical Imaging, 2019, 38, 1948-1958.	8.9	84
40	SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 1010-1019.	8.0	199
41	Unsupervised Domain Adaptation of ConvNets for Medical Image Segmentation via Adversarial Learning. Advances in Computer Vision and Pattern Recognition, 2019, , 93-115.	1.3	5
42	Unifying Structure Analysis and Surrogate-Driven Function Regression for Glaucoma OCT Image Screening. Lecture Notes in Computer Science, 2019, , 39-47.	1.3	4
43	PFA-ScanNet: Pyramidal Feature Aggregation with Synergistic Learning for Breast Cancer Metastasis Analysis. Lecture Notes in Computer Science, 2019, , 586-594.	1.3	10
44	IRNet: Instance Relation Network for Overlapping Cervical Cell Segmentation. Lecture Notes in Computer Science, 2019, , 640-648.	1.3	30
45	Deep Angular Embedding and Feature Correlation Attention for Breast MRI Cancer Analysis. Lecture Notes in Computer Science, 2019, , 504-512.	1.3	10
46	An Active Learning Approach for Reducing Annotation Cost in Skin Lesion Analysis. Lecture Notes in Computer Science, 2019, , 628-636.	1.3	24
47	PRSNet: Part Relation and Selection Network for Bone Age Assessment. Lecture Notes in Computer Science, 2019, , 413-421.	1.3	12
48	CD147 Induces Epithelial-to-Mesenchymal Transition by Disassembling Cellular Apoptosis Susceptibility Protein/E-Cadherin/β-Catenin Complex in Human Endometriosis. American Journal of Pathology, 2018, 188, 1597-1607.	3.8	28
49	3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images. Medical Image Analysis, 2018, 45, 41-54.	11.6	110
50	SV-RCNet: Workflow Recognition From Surgical Videos Using Recurrent Convolutional Network. IEEE Transactions on Medical Imaging, 2018, 37, 1114-1126.	8.9	184
51	VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images. Neurolmage, 2018, 170, 446-455.	4.2	539
52	MTMR-Net: Multi-task Deep Learning with Margin Ranking Loss for Lung Nodule Analysis. Lecture Notes in Computer Science, 2018, , 74-82.	1.3	16
53	ScanNet: A Fast and Dense Scanning Framework for Metastastic Breast Cancer Detection from Whole-Slide Image. , 2018 , , .		48
54	HL-FCN: Hybrid loss guided FCN for colorectal cancer segmentation. , 2018, , .		15

#	Article	IF	CITATIONS
55	H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. IEEE Transactions on Medical Imaging, 2018, 37, 2663-2674.	8.9	1,439
56	Semantic-Aware Generative Adversarial Nets for Unsupervised Domain Adaptation in Chest X-Ray Segmentation. Lecture Notes in Computer Science, 2018, , 143-151.	1.3	99
57	Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge. IEEE Transactions on Medical Imaging, 2017, 36, 1231-1249.	8.9	297
58	The Height-Width-Depth Ratios of the Intervertebral Discs and Vertebral Bodies in Adolescent Idiopathic Scoliosis vs Controls in a Chinese Population. Scientific Reports, 2017, 7, 46448.	3.3	12
59	3D deeply supervised network for automated segmentation of volumetric medical images. Medical Image Analysis, 2017, 41, 40-54.	11.6	444
60	Ultrasound Standard Plane Detection Using a Composite Neural Network Framework. IEEE Transactions on Cybernetics, 2017, 47, 1576-1586.	9.5	118
61	Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks. IEEE Transactions on Medical Imaging, 2017, 36, 994-1004.	8.9	763
62	Integrating Online and Offline Three-Dimensional Deep Learning for Automated Polyp Detection in Colonoscopy Videos. IEEE Journal of Biomedical and Health Informatics, 2017, 21, 65-75.	6.3	184
63	Automated Pulmonary Nodule Detection via 3D ConvNets with Online Sample Filtering and Hybrid-Loss Residual Learning. Lecture Notes in Computer Science, 2017, , 630-638.	1.3	90
64	Automatic 3D Cardiovascular MR Segmentation with Densely-Connected Volumetric ConvNets. Lecture Notes in Computer Science, 2017, , 287-295.	1.3	105
65	Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA - Journal of the American Medical Association, 2017, 318, 2199.	7.4	2,003
66	Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Medical Image Analysis, 2017, 42, 1-13.	11.6	710
67	DCAN: Deep contour-aware networks for object instance segmentation from histology images. Medical Image Analysis, 2017, 36, 135-146.	11.6	361
68	Evaluation and comparison of 3D intervertebral disc localization and segmentation methods for 3D T2 MR data: A grand challenge. Medical Image Analysis, 2017, 35, 327-344.	11.6	59
69	Gland segmentation in colon histology images: The glas challenge contest. Medical Image Analysis, 2017, 35, 489-502.	11.6	516
70	Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection. IEEE Transactions on Biomedical Engineering, 2017, 64, 1558-1567.	4.2	436
71	The design of permanent-magnetic wheeled wall-climbing robot. , 2017, , .		13
72	Deep Cascaded Networks for Sparsely Distributed Object Detection from Medical Images. , 2017, , 133-154.		3

#	Article	IF	Citations
73	AGNet: Attention-Guided Network for Surgical Tool Presence Detection. Lecture Notes in Computer Science, 2017, , 186-194.	1.3	14
74	CD147 regulates extrinsic apoptosis in spermatocytes by modulating NF \hat{I}^{PB} signaling pathways. Oncotarget, 2017, 8, 3132-3143.	1.8	24
75	Upregulation of CFTR in patients with endometriosis and its involvement in NFκB-uPAR dependent cell migration. Oncotarget, 2017, 8, 66951-66959.	1.8	14
76	CCR6 is required for ligand-induced CatSper activation in human sperm. Oncotarget, 2017, 8, 91445-91458.	1.8	20
77	Automated mitosis detection with deep regression networks. , 2016, , .		28
78	3D Fully Convolutional Networks for Intervertebral Disc Localization and Segmentation. Lecture Notes in Computer Science, 2016, , 375-382.	1.3	38
79	3D Deeply Supervised Network for Automatic Liver Segmentation from CT Volumes. Lecture Notes in Computer Science, 2016, , 149-157.	1.3	191
80	Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks. IEEE Transactions on Medical Imaging, 2016, 35, 1182-1195.	8.9	507
81	Iterative Multi-domain Regularized Deep Learning for Anatomical Structure Detection and Segmentation from Ultrasound Images. Lecture Notes in Computer Science, 2016, , 487-495.	1.3	52
82	Multi-scale and Modality Dropout Learning for Intervertebral Disc Localization and Segmentation. Lecture Notes in Computer Science, 2016, , 85-91.	1.3	5
83	DCAN: Deep Contour-Aware Networks for Accurate Gland Segmentation. , 2016, , .		363
84	Up-regulation of Bcl-2 by CD147 Through ERK Activation Results in Abnormal Cell Survival in Human Endometriosis. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E955-E963.	3.6	29
85	Automatic cerebral microbleeds detection from MR images via Independent Subspace Analysis based hierarchical features. , 2015, 2015, 7933-6.		11
86	Square Localization for Efficient and Accurate Object Detection. , 2015, , .		2
87	Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks. IEEE Journal of Biomedical and Health Informatics, 2015, 19, 1627-1636.	6.3	291
88	Automatic detection of cerebral microbleeds via deep learning based 3D feature representation. , 2015, , .		43
89	Reconstitution of coronary vasculature by an active fraction of Geum japonicum in ischemic hearts. Scientific Reports, 2015, 4, 3962.	3.3	3
90	Generation of scFv specific to human VEGFR-3 from the neutralizing mAb BDD073. Protein Engineering, Design and Selection, 2015, 28, 19-22.	2.1	0

#	Article	IF	CITATIONS
91	Automatic Fetal Ultrasound Standard Plane Detection Using Knowledge Transferred Recurrent Neural Networks. Lecture Notes in Computer Science, 2015, , 507-514.	1.3	83
92	Automatic Localization and Identification of Vertebrae in Spine CT via a Joint Learning Model with Deep Neural Networks. Lecture Notes in Computer Science, 2015, , 515-522.	1.3	78
93	Deficient human \hat{l}^2 -defensin 1 underlies male infertility associated with poor sperm motility and genital tract infection. Science Translational Medicine, 2014, 6, 249ra108.	12.4	69
94	Elevated expression of CD147 in patients with endometriosis and its role in regulating apoptosis and migration of human endometrial cells. Fertility and Sterility, 2014, 101, 1681-1687.e1.	1.0	15
95	Inhibition of angiogenesis by a novel neutralizing antibody targeting human VEGFR-3. MAbs, 2013, 5, 956-961.	5.2	10
96	New insights into germ cell migration and survival/apoptosis in spermatogenesis. Spermatogenesis, 2012, 2, 264-272.	0.8	31
97	CD147 regulates apoptosis in mouse spermatocytes but not spermatogonia. Human Reproduction, 2012, 27, 1568-1576.	0.9	26
98	CD147 is required for matrix metalloproteinases-2 production and germ cell migration during spermatogenesis. Molecular Human Reproduction, 2011, 17, 405-414.	2.8	43
99	Reconstitution of coronary vasculature in ischemic hearts. Cell Biology International, 2008, 32, S13-S13.	3.0	0
100	A Multi-Task Deep-Learning System to Classify Diabetic Macular Edema for Different Optical Coherence Tomography Devices: A Multi-Centre Analysis. SSRN Electronic Journal, 0, , .	0.4	1
101	Three-Dimensional Multi-Task Deep Learning Model to Detect Glaucomatous Optic Neuropathy and Myopic Features From Optical Coherence Tomography Scans: A Retrospective Multi-Centre Study. Frontiers in Medicine, 0, 9, .	2.6	8