Zhang Yu-Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6414953/publications.pdf

Version: 2024-02-01

29 2,093 21 29
papers citations h-index g-index

29 29 29 1063 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Lewis acid-catalyzed [4 + 2] cycloaddition of 3-alkyl-2-vinylindoles with \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l}_\pm -ketoesters. Green Synthesis and Catalysis, 2022, 3, 84-88.	6.8	12
2	Rational Design of Axially Chiral Styreneâ€Based Organocatalysts and Their Application in Catalytic Asymmetric (2+4) Cyclizations. Angewandte Chemie - International Edition, 2022, 61, e202112226.	13.8	49
3	Catalytic Asymmetric Synthesis of Axially Chiral 3,3'â€Bisindoles by Direct Coupling of Indole Rings. Chinese Journal of Chemistry, 2022, 40, 2151-2160.	4.9	77
4	Regio―and Enantioselective (3+3) Cycloaddition of Nitrones with 2â€Indolylmethanols Enabled by Cooperative Organocatalysis. Angewandte Chemie - International Edition, 2021, 60, 2355-2363.	13.8	81
5	Regio- and enantioselective ring-opening reaction of vinylcyclopropanes with indoles under cooperative catalysis. Organic Chemistry Frontiers, 2021, 8, 212-223.	4.5	22
6	Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives. Organic Chemistry Frontiers, 2021, 8, 2643-2672.	4.5	82
7	(4 + 2) cyclization of aza- <i>o</i> -quinone methides with azlactones: construction of biologically important dihydroquinolinone frameworks. Organic and Biomolecular Chemistry, 2021, 19, 1334-1343.	2.8	15
8	Atroposelective Construction of Axially Chiral <scp>Alkeneâ€Indole</scp> Scaffolds <i>via</i> Catalytic Enantioselective Addition Reaction of <scp>3â€Alkynyl</scp> â€2â€Indolylmethanols ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2163-2171.	4.9	69
9	Application of 3-Alkyl-2-vinylindoles in Catalytic Asymmetric Dearomative (2+3) Cycloadditions. Journal of Organic Chemistry, 2021, 86, 10427-10439.	3.2	16
10	Organocatalytic Asymmetric [2 + 4] Cycloadditions of 3-Vinylindoles with ortho-Quinone Methides. Molecules, 2021, 26, 6751.	3.8	6
11	Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach. Accounts of Chemical Research, 2020, 53, 425-446.	15.6	414
12	Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Organic Chemistry Frontiers, 2020, 7, 3967-3998.	4.5	175
13	Catalytic Asymmetric Synthesis of 3,3′-Bisindoles Bearing Single Axial Chirality. Journal of Organic Chemistry, 2020, 85, 10152-10166.	3.2	31
14	Catalytic Asymmetric Substitution Reaction of 3-Substituted 2-Indolylmethanols with 2-Naphthols. Synthesis, 2020, 52, 3684-3692.	2.3	20
15	Atroposelective Access to Oxindole-Based Axially Chiral Styrenes via the Strategy of Catalytic Kinetic Resolution. Journal of the American Chemical Society, 2020, 142, 15686-15696.	13.7	115
16	Metalâ€Catalyzed Regiospecific (4+3) Cyclization of 2â€Indolylmethanols with <i>ortho</i> â€Quinone Methides. European Journal of Organic Chemistry, 2020, 2020, 4301-4308.	2.4	21
17	Axially Chiral <scp>Arylâ€Alkeneâ€Indole</scp> Framework: A Nascent Member of the Atropisomeric Family and Its Catalytic Asymmetric Construction. Chinese Journal of Chemistry, 2020, 38, 543-552.	4.9	121
18	Construction of chiral chroman scaffolds <i>via</i> catalytic asymmetric (4 + 2) cyclizations of <i>para</i> -quinone methide derivatives with 3-vinylindoles. Organic and Biomolecular Chemistry, 2020, 18, 5388-5399.	2.8	21

#	Article	IF	CITATIONS
19	Design and Application of <scp>Indoleâ€Based</scp> Allylic Donors for <scp>Pdâ€Catalyzed</scp> Decarboxylative Allylation Reactions ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1612-1618.	4.9	38
20	Atroposelective Synthesis of 3,3'â€Bisindoles Bearing Axial and Central Chirality: Using <scp>Isatinâ€Derived</scp> Imines as Electrophiles. Chinese Journal of Chemistry, 2020, 38, 583-589.	4.9	65
21	Isothiourea and Brønsted Acid Cooperative Catalysis: Enantioselective Construction of Dihydropyridinones. Organic Letters, 2020, 22, 2261-2265.	4.6	20
22	A Strategy for Synthesizing Axially Chiral Naphthylâ€Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angewandte Chemie - International Edition, 2019, 58, 15104-15110.	13.8	148
23	A Strategy for Synthesizing Axially Chiral Naphthylâ€Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angewandte Chemie, 2019, 131, 15248-15254.	2.0	33
24	Enantioselective Decarboxylative Propargylation/Hydroamination Enabled by Organo/Metal Cooperative Catalysis. Organic Letters, 2018, 20, 2792-2795.	4.6	43
25	Enantioselective [3 + 2] Cycloaddition Reaction of Ethynylethylene Carbonates with Malononitrile Enabled by Organo/Metal Cooperative Catalysis. Organic Letters, 2018, 20, 7907-7911.	4.6	63
26	Rational Design of Amine Nucleophiles for Dynamic Kinetic Resolution of Azlactones Leading to Highly Enantioselective Synthesis of Bisamides. Asian Journal of Organic Chemistry, 2016, 5, 914-919.	2.7	14
27	Merging Chiral Brønsted Acid/Base Catalysis: An Enantioselective [4Â+ 2] Cycloaddition of <i>o</i> -Hydroxystyrenes with Azlactones. Journal of Organic Chemistry, 2016, 81, 1681-1688.	3.2	101
28	Organocatalytic Asymmetric Arylative Dearomatization of 2,3â€Disubstituted Indoles Enabled by Tandem Reactions. Angewandte Chemie - International Edition, 2014, 53, 13912-13915.	13.8	190
29	Organocatalytic Chemo- and Regioselective Oxyarylation of Styrenes via a Cascade Reaction: Remote Activation of Hydroxyl Groups. Journal of Organic Chemistry, 2014, 79, 6143-6152.	3.2	31