Teng Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6414071/publications.pdf

Version: 2024-02-01

623188 752256 20 897 14 20 citations h-index g-index papers 20 20 20 972 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the–art review. Chemical Engineering Journal, 2020, 402, 126232.	6.6	234
2	Application of advanced anodes in microbial fuel cells for power generation: A review. Chemosphere, 2020, 248, 125985.	4.2	133
3	Combination and performance of forward osmosis and membrane distillation (FO-MD) for treatment of high salinity landfill leachate. Desalination, 2017, 420, 99-105.	4.0	83
4	Enhanced performance of microbial fuel cells by electrospinning carbon nanofibers hybrid carbon nanotubes composite anode. International Journal of Hydrogen Energy, 2019, 44, 3088-3098.	3.8	80
5	Enhancing oxygen reduction reaction of supercapacitor microbial fuel cells with electrospun carbon nanofibers composite cathode. Chemical Engineering Journal, 2019, 371, 544-553.	6.6	65
6	Enhancing rejection performance of tetracycline resistance genes by a TiO2/AgNPs-modified nanofiber forward osmosis membrane. Chemical Engineering Journal, 2020, 382, 123052.	6.6	40
7	Electrospun polysulfone (<scp>PSf</scp>)/titanium dioxide (<scp>TiO₂</scp>) nanocomposite fibers as substrates to prepare thin film forward osmosis membranes. Journal of Chemical Technology and Biotechnology, 2017, 92, 2090-2097.	1.6	38
8	Comparison of electrochemical performances and microbial community structures of two photosynthetic microbial fuel cells. Journal of Bioscience and Bioengineering, 2017, 124, 551-558.	1.1	34
9	Nanofiber composite forward osmosis (NCFO) membranes for enhanced antibiotics rejection: Fabrication, performance, mechanism, and simulation. Journal of Membrane Science, 2020, 595, 117425.	4.1	31
10	Electrochemical performance and community structure in three microbial fuel cells treating landfill leachate. Chemical Engineering Research and Design, 2018, 113, 378-387.	2.7	25
11	Spatial distribution and nitrogen metabolism behaviors of anammox biofilms in bioelectrochemical system regulated by continuous/intermittent weak electrical stimulation. Journal of Cleaner Production, 2022, 336, 130486.	4.6	22
12	Simultaneous energy harvest and nitrogen removal using a supercapacitor microbial fuel cell. Environmental Pollution, 2020, 266, 115154.	3.7	19
13	Performance of simultaneous wastewater reuse and seawater desalination by PAO-LPRO process. Separation and Purification Technology, 2018, 201, 276-282.	3.9	16
14	Microbial mechanism underlying high methane production of coupled alkali-microwave–H2O2–oxidation pretreated sewage sludge by in-situ bioelectrochemical regulation. Journal of Cleaner Production, 2021, 305, 127195.	4.6	16
15	Anaerobic bioconversion of petrochemical wastewater to biomethane in a semi-continuous bioreactor: Biodegradability, mineralization behaviors and methane productivity. Bioresource Technology, 2020, 304, 123005.	4.8	14
16	Electrochemically active microorganisms sense charge transfer resistance for regulating biofilm electroactivity, spatio-temporal distribution, and catabolic pathway. Chemical Engineering Journal, 2022, 442, 136248.	6.6	14
17	Clarifying catalytic behaviors and electron transfer routes of electroactive biofilm during bioelectroconversion of CO2 to CH4. Fuel, 2022, 310, 122450.	3.4	13
18	Electricity generation and pollutants removal of landfill leachate by osmotic microbial fuel cells with different forward osmosis membranes. Sustainable Environment Research, 2021, 31, .	2.1	10

TENG CAI

#	Article	IF	CITATION
19	Removal of Tetracycline Resistance and Bacteria Diversity Changes by Advanced Membrane Process. Journal of Environmental Engineering, ASCE, 2019, 145, .	0.7	7
20	Effect of Membrane Thickness on Properties of FO Membranes with Nanofibrous Substrate. IOP Conference Series: Earth and Environmental Science, 2018, 170, 052005.	0.2	3