List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6413866/publications.pdf Version: 2024-02-01

ΙΙΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Regulation of Lignin Biosynthesis and Its Role in Growth-Defense Tradeoffs. Frontiers in Plant Science, 2018, 9, 1427.	1.7	231
2	<scp>Genomeâ€wide association studies</scp> and expressionâ€based quantitative trait loci analyses reveal roles of <scp>HCT</scp> 2 in caffeoylquinic acid biosynthesis and its regulation by defenseâ€responsive transcription factors in <i>Populus</i> . New Phytologist, 2018, 220, 502-516.	3.5	112
3	Recent Advances in the Transcriptional Regulation of Secondary Cell Wall Biosynthesis in the Woody Plants. Frontiers in Plant Science, 2018, 9, 1535.	1.7	110
4	Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses. BMC Genomics, 2013, 14, 532.	1.2	109
5	Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica, 2010, 48, 30-41.	0.9	105
6	WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation. BMC Genomics, 2014, 15, 296.	1.2	103
7	Enhanced stability of thylakoid membrane proteins and antioxidant competence contribute to drought stress resistance in the tasg1 wheat stay-green mutant. Journal of Experimental Botany, 2013, 64, 1509-1520.	2.4	101
8	Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics, 2015, 16, 181.	1.2	90
9	Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. Journal of Plant Physiology, 2011, 168, 960-966.	1.6	85
10	Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Plant Biotechnology Reports, 2010, 4, 213-222.	0.9	84
11	Construction of a high-density linkage map and mapping of sex determination and growth-related loci in the mandarin fish (Siniperca chuatsi). BMC Genomics, 2017, 18, 446.	1.2	82
12	Drought tolerance through overexpression of monoubiquitin in transgenic tobacco. Journal of Plant Physiology, 2008, 165, 1745-1755.	1.6	69
13	Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant–pathogen interactions in a tree. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11573-11578.	3.3	61
14	A 5-Enolpyruvylshikimate 3-Phosphate Synthase Functions as a Transcriptional Repressor in <i>Populus</i> . Plant Cell, 2018, 30, 1645-1660.	3.1	56
15	Genome-Wide Identification, Classification, and Expression Analysis of 14-3-3 Gene Family in Populus. PLoS ONE, 2015, 10, e0123225.	1.1	52
16	Expression and integrated network analyses revealed functional divergence of NHX-type Na+/H+ exchanger genes in poplar. Scientific Reports, 2017, 7, 2607.	1.6	50
17	The WUSCHEL-related homeobox 5a (PtoWOX5a) is involved in adventitious root development in poplar. Tree Physiology, 2018, 38, 139-153.	1.4	48
18	A survey of Populus PIN-FORMED family genes reveals their diversified expression patterns. Journal of Experimental Botany, 2014, 65, 2437-2448.	2.4	46

#	Article	IF	CITATIONS
19	Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. Frontiers in Plant Science, 2020, 11, 572137.	1.7	43
20	Mediation of plant–mycorrhizal interaction by a lectin receptor-like kinase. Nature Plants, 2019, 5, 676-680.	4.7	42
21	The heat shock factor gene family in Salix suchowensis: a genome-wide survey and expression profiling during development and abiotic stresses. Frontiers in Plant Science, 2015, 6, 748.	1.7	40
22	The Populus trichocarpa PtHSP17.8 involved in heat and salt stress tolerances. Plant Cell Reports, 2016, 35, 1587-1599.	2.8	37
23	Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow, Salix psammophila. Frontiers in Plant Science, 2016, 7, 1505.	1.7	36
24	De novo transcriptome assembly, development of EST-SSR markers and population genetic analyses for the desert biomass willow, Salix psammophila. Scientific Reports, 2016, 6, 39591.	1.6	36
25	Transcriptional and Post-transcriptional Regulation of Lignin Biosynthesis Pathway Genes in Populus. Frontiers in Plant Science, 2020, 11, 652.	1.7	34
26	Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar. Scientific Reports, 2016, 6, 30050.	1.6	31
27	Genome-Wide Identification, Classification, and Expression Analysis of the Hsf Gene Family in Carnation (Dianthus caryophyllus). International Journal of Molecular Sciences, 2019, 20, 5233.	1.8	31
28	Recent Advances in the Roles of HSFs and HSPs in Heat Stress Response in Woody Plants. Frontiers in Plant Science, 2021, 12, 704905.	1.7	29
29	Defining the genetic components of callus formation: A GWAS approach. PLoS ONE, 2018, 13, e0202519.	1.1	27
30	Characterization of the Populus Rab family genes and the function of PtRabE1b in salt tolerance. BMC Plant Biology, 2018, 18, 124.	1.6	27
31	Overexpression of a serine hydroxymethyltransferase increases biomass production and reduces recalcitrance in the bioenergy crop <i>Populus</i> . Sustainable Energy and Fuels, 2019, 3, 195-207.	2.5	27
32	A Populus TIR1 gene family survey reveals differential expression patterns and responses to 1-naphthaleneacetic acid and stress treatments. Frontiers in Plant Science, 2015, 6, 719.	1.7	26
33	An Efficient Agrobacterium-Mediated Transformation Method for Hybrid Poplar 84K (Populus alba × P.) Tj ETQq1	1.0.7843	314.rgBT /0
34	Overexpression of an Agave Phosphoenolpyruvate Carboxylase Improves Plant Growth and Stress Tolerance. Cells, 2021, 10, 582.	1.8	24
35	A New Perspective on Ecological Prediction Reveals Limits to Climate Adaptation in a Temperate Tree Species. Current Biology, 2020, 30, 1447-1453.e4.	1.8	23
36	Overexpression of monoubiquitin improves photosynthesis in transgenic tobacco plants following high temperature stress. Plant Science, 2014, 226, 92-100.	1.7	22

#	Article	IF	CITATIONS
37	Agronomic performance of Populus deltoides trees engineered for biofuel production. Biotechnology for Biofuels, 2017, 10, 253.	6.2	22
38	Genome-wide survey and expression analysis of the stress-associated protein gene family in desert poplar, Populus euphratica. Tree Genetics and Genomes, 2016, 12, 1.	0.6	21
39	PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar. Plant Molecular Biology, 2018, 98, 389-406.	2.0	21
40	Genome resequencing reveals demographic history and genetic architecture of seed salinity tolerance in Populus euphratica. Journal of Experimental Botany, 2020, 71, 4308-4320.	2.4	21
41	Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs. PLoS ONE, 2015, 10, e0124669.	1.1	21
42	Genome-Wide Characterization of the sHsp Gene Family in Salix suchowensis Reveals Its Functions under Different Abiotic Stresses. International Journal of Molecular Sciences, 2018, 19, 3246.	1.8	20
43	Expression and localization of SWEETs in <i>Populus</i> and the effect of <i>SWEET7</i> overexpression in secondary growth. Tree Physiology, 2021, 41, 882-899.	1.4	20
44	Advances and perspectives in discovery and functional analysis of small secreted proteins in plants. Horticulture Research, 2021, 8, 130.	2.9	20
45	Molecular response of poplar to single and combined ozone and drought. Science of the Total Environment, 2019, 655, 1364-1375.	3.9	19
46	Agronomic performance of 27 <i>Populus</i> clones evaluated after two 3â€year coppice rotations in Henan, China. GCB Bioenergy, 2020, 12, 168-181.	2.5	18
47	Transporters and ascorbate–glutathione metabolism for differential cadmium accumulation and tolerance in two contrasting willow genotypes. Tree Physiology, 2020, 40, 1126-1142.	1.4	18
48	An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation. PLoS ONE, 2017, 12, e0170201.	1.1	18
49	Overexpression of a <i>Prefoldin β</i> subunit gene reduces biomass recalcitrance in the bioenergy crop <i>Populus</i> . Plant Biotechnology Journal, 2020, 18, 859-871.	4.1	17
50	Arabidopsis Câ€ŧerminal binding protein ANGUSTIFOLIA modulates transcriptional coâ€regulation of <i>MYB46</i> and <i>WRKY33</i> . New Phytologist, 2020, 228, 1627-1639.	3.5	17
51	Integrated regulatory network reveals the early salt tolerance mechanism of Populus euphratica. Scientific Reports, 2017, 7, 6769.	1.6	16
52	Evolutionary Divergence of Duplicated Hsf Genes in Populus. Cells, 2019, 8, 438.	1.8	16
53	Plant Biosystems Design Research Roadmap 1.0. Biodesign Research, 2020, 2020, .	0.8	16
54	Manipulation of monoubiquitin improves salt tolerance in transgenic tobacco. Plant Biology, 2012, 14, 315-324.	1.8	15

#	Article	IF	CITATIONS
55	Lignin biosynthesis and accumulation in response to abiotic stresses in woody plants. Forestry Research, 2022, 2, 0-0.	0.5	15
56	Proteomic analysis and candidate allergenic proteins in Populus deltoides CL. "2KEN8―mature pollen. Frontiers in Plant Science, 2015, 6, 548.	1.7	14
57	Insights of Molecular Mechanism of Xylem Development in Five Black Poplar Cultivars. Frontiers in Plant Science, 2020, 11, 620.	1.7	14
58	Transcriptome Sequencing and Identification of Cold Tolerance Genes in Hardy Corylus Species (C.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5 14
59	AtBET5 is essential for exine pattern formation and apical meristem organization in Arabidopsis. Plant Science, 2018, 274, 231-241.	1.7	12
60	A Single Amino Acid Change in Nramp6 from Sedum Alfredii Hance Affects Cadmium Accumulation. International Journal of Molecular Sciences, 2020, 21, 3169.	1.8	12
61	Expression and Functional Analysis of WRKY Transcription Factors in Chinese Wild Hazel, Corylus heterophylla Fisch. PLoS ONE, 2015, 10, e0135315.	1.1	11
62	Proteomic Analysis and Identification of Possible Allergenic Proteins in Mature Pollen of Populus tomentosa. International Journal of Molecular Sciences, 2018, 19, 250.	1.8	11
63	Genome-wide transcriptomic analysis of a desert willow, Salix psammophila, reveals the function of hub genes SpMDP1 and SpWRKY33 in drought tolerance. BMC Plant Biology, 2019, 19, 356.	1.6	11
64	The Salix psammophila SpRLCK1 involved in drought and salt tolerance. Plant Physiology and Biochemistry, 2019, 144, 222-233.	2.8	11
65	Light-responsive expression atlas reveals the effects of light quality and intensity in Kalanchoë fedtschenkoi, a plant with crassulacean acid metabolism. GigaScience, 2020, 9, .	3.3	11
66	Comparative Proteomic Analysis of Mature Pollen in Triploid and Diploid Populus deltoides. International Journal of Molecular Sciences, 2016, 17, 1475.	1.8	10
67	Opportunities and barriers for biofuel and bioenergy production from poplar. GCB Bioenergy, 2021, 13, 905-913.	2.5	10
68	Transcriptional Regulation and Signaling of Developmental Programmed Cell Death in Plants. Frontiers in Plant Science, 2021, 12, 702928.	1.7	10
69	A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a <i>Populus</i> ANGUSTIFOLIA Protein. G3: Genes, Genomes, Genetics, 2018, 8, 2631-2641.	0.8	9
70	Genome-wide identification, evolution and expression analysis of the aspartic protease gene family during rapid growth of moso bamboo (Phyllostachys edulis) shoots. BMC Genomics, 2021, 22, 45.	1.2	9
71	The Ancient Salicoid Genome Duplication Event: A Platform for Reconstruction of De Novo Gene Evolution in Populus trichocarpa. Genome Biology and Evolution, 2021, 13, .	1.1	9
72	The WUSCHELa (PtoWUSa) is Involved in Developmental Plasticity of Adventitious Root in Poplar. Genes, 2020, 11, 176.	1.0	9

#	Article	IF	CITATIONS
73	Transcriptome differences between 20- and 3,000-year-old Platycladus orientalis reveal that ROS are involved in senescence regulation. Electronic Journal of Biotechnology, 2017, 29, 68-77.	1.2	8
74	Proteome-Level Analysis of Metabolism- and Stress-Related Proteins during Seed Dormancy and Germination in Gnetum parvifolium. Journal of Agricultural and Food Chemistry, 2018, 66, 3019-3029.	2.4	8
75	Genome-wide characterization of protein phosphatase 2C genes in Populus euphratica and their expression profiling under multiple abiotic stresses. Tree Genetics and Genomes, 2018, 14, 1.	0.6	7
76	Transcriptome and structure analysis in root of <i>Casuarina equisetifolia</i> under NaCl treatment. PeerJ, 2021, 9, e12133.	0.9	6
77	De novo Characterization of the Platycladus orientalis Transcriptome and Analysis of Photosynthesis-Related Genes during Aging. Forests, 2019, 10, 393.	0.9	4
78	Identification of functional single nucleotide polymorphism of Populus trichocarpa PtrEPSPâ€₹F and determination of its transcriptional effect. Plant Direct, 2020, 4, e00178.	0.8	4
79	Protocol for Projecting Allele Frequency Change underÂFuture Climate Change at Adaptive-AssociatedÂLoci. STAR Protocols, 2020, 1, 100061.	0.5	4
80	Genetic architecture of leaf morphological and physiological traits in a Populus deltoides â€Danhong' × P. simonii â€Tongliao1' pedigree revealed by quantitative trait locus analysis. Tree Genetics and Genomes, 2020, 16, 1.	0.6	4
81	Opportunities and Challenges of Predictive Approaches for the Non-coding RNA in Plants. Frontiers in Plant Science, 2022, 13, 890663.	1.7	4
82	Whole-genome re-sequencing reveals molecular mechanisms of biomass changes in 11-year-old Bt transgenic poplar. Trees - Structure and Function, 2018, 32, 1609-1620.	0.9	2
83	Genetic identification of 91 poplar cultivars based on SSR markers. Nordic Journal of Botany, 2020, 38,	0.2	2
84	Diversity and conservation of plant small secreted proteins associated with arbuscular mycorrhizal symbiosis. Horticulture Research, 2022, 9, .	2.9	1
85	Platycladus orientalis PoKub3 is involved in abiotic stress responses in transgenic arabidopsis. Journal of Plant Biology, 2017, 60, 322-334.	0.9	0
86	An essential role for Arabidopsis Trs33 in cell growth and organization in plant apical meristems. Plant Cell Reports, 2020, 39, 381-391.	2.8	0
87	Editorial: Biofuels and Bioenergy. Frontiers in Plant Science, 2020, 11, 621380.	1.7	0
88	The PagKNAT2/6b-PagBOP1/2a Regulatory Module Controls Leaf Morphogenesis in Populus. International Journal of Molecular Sciences, 2022, 23, 5581.	1.8	0