Cilla Söderhäll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6413760/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diagnosing atopic dermatitis in infancy using established diagnostic criteria: a cohort study. British Journal of Dermatology, 2022, 186, 50-58.	1.4	12
2	Filaggrin mutations in relation to skin barrier and atopic dermatitis in early infancy*. British Journal of Dermatology, 2022, 186, 544-552.	1.4	14
3	Impaired skin barrier and allergic sensitization in early infancy. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1464-1476.	2.7	24
4	Development of Sensitization to Multiple Allergen Molecules from Preschool to School Age Is Related to Asthma. International Archives of Allergy and Immunology, 2022, 183, 628-639.	0.9	5
5	Evaluation of Skin Prick Test Reading Time at 10 versus 15 min in Young Infants. International Archives of Allergy and Immunology, 2022, 183, 824-834.	0.9	1
6	Genome-wide study of early and severe childhood asthma identifies interaction between CDHR3 and GSDMB. Journal of Allergy and Clinical Immunology, 2022, 150, 622-630.	1.5	8
7	Maternal Stress, Early Life Factors and Infant Salivary Cortisol Levels. Children, 2022, 9, 623.	0.6	2
8	Persistent Asthma in Childhood. Children, 2022, 9, 820.	0.6	2
9	Early food intervention and skin emollients to prevent food allergy in young children (PreventADALL): a factorial, multicentre, cluster-randomised trial. Lancet, The, 2022, 399, 2398-2411.	6.3	66
10	The effect of nicotine-containing products and fetal sex on placenta-associated circulating midpregnancy biomarkers. Biology of Sex Differences, 2022, 13, .	1.8	1
11	Shared DNA methylation signatures in childhood allergy: The MeDALL study. Journal of Allergy and Clinical Immunology, 2021, 147, 1031-1040.	1.5	24
12	DNA Methylation Levels in Mononuclear Leukocytes from the Mother and Her Child Are Associated with IgE Sensitization to Allergens in Early Life. International Journal of Molecular Sciences, 2021, 22, 801.	1.8	18
13	Physical activity in pregnancy: a Norwegian-Swedish mother-child birth cohort study. AJOG Global Reports, 2021, 1, 100002.	0.4	4
14	Fecal Microbiota Nutrient Utilization Potential Suggests Mucins as Drivers for Initial Gut Colonization of Mother-Child-Shared Bacteria. Applied and Environmental Microbiology, 2021, 87, .	1.4	5
15	Nasal upregulation of <i>CST1</i> in dog-sensitised children with severe allergic airway disease. ERJ Open Research, 2021, 7, 00917-2020.	1.1	8
16	Extract and molecularâ€based early infant sensitization and associated factors—A PreventADALL study. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2730-2739.	2.7	9
17	Microarray Technology May Reveal the Contribution of Allergen Exposure and Rhinovirus Infections as Possible Triggers for Acute Wheezing Attacks in Preschool Children. Viruses, 2021, 13, 915.	1.5	7
18	High-resolution targeted bisulfite sequencing reveals blood cell type-specific DNA methylation patterns in IL13 and ORMDL3. Clinical Epigenetics, 2021, 13, 106.	1.8	0

Cilla SöderhÃ₽L

#	Article	IF	CITATIONS
19	Early Life Wheeze and Risk Factors for Asthma—A Revisit at Age 7 in the GEWAC-Cohort. Children, 2021, 8, 488.	0.6	6
20	Maternal human papillomavirus infections at mid-pregnancy and delivery in a Scandinavian mother–child cohort study. International Journal of Infectious Diseases, 2021, 108, 574-581.	1.5	5
21	Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nature Genetics, 2021, 53, 1311-1321.	9.4	218
22	Eczema distribution in girls and boys during infancy: A cohort study on atopic dermatitis. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3513-3516.e2.	2.0	2
23	Prevalence and perinatal risk factors of parentâ€reported colic, abdominal pain and other pain or discomforts in infants until 3Âmonths of age ―A prospective cohort study in PreventADALL. Journal of Clinical Nursing, 2021, , .	1.4	4
24	Maternal and paternal atopic dermatitis and risk of atopic dermatitis during early infancy in girls and boys. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 416-418.e2.	2.0	1
25	Acute wheeze-specific gene module shows correlation with vitamin D and asthma medication. European Respiratory Journal, 2020, 55, 1901330.	3.1	9
26	Effects of inhaled corticosteroids on DNA methylation in peripheral blood cells in children with asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 688-691.	2.7	8
27	Predicting Skin Barrier Dysfunction and Atopic Dermatitis in Early Infancy. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 664-673.e5.	2.0	35
28	Allergic disease and risk of stress in pregnant women: a PreventADALL study. ERJ Open Research, 2020, 6, 00175-2020.	1.1	3
29	Epigenetic alterations in skin homing CD4+CLA+ T cells of atopic dermatitis patients. Scientific Reports, 2020, 10, 18020.	1.6	23
30	Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Medicine, 2020, 12, 25.	3.6	81
31	Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial. Lancet, The, 2020, 395, 951-961.	6.3	156
32	Maternal use of nicotine products and breastfeeding 3Âmonths postpartum. Acta Paediatrica, International Journal of Paediatrics, 2020, 109, 2594-2603.	0.7	5
33	De novo species identification using 16S rRNA gene nanopore sequencing. PeerJ, 2020, 8, e10029.	0.9	2
34	DNA Methylation Trajectories During Pregnancy. Epigenetics Insights, 2019, 12, 251686571986709.	0.6	26
35	Guide for library design and bias correction for large-scale transcriptome studies using highly multiplexed RNAseq methods. BMC Bioinformatics, 2019, 20, 418.	1.2	9
36	Epigenome-wide meta-analysis of DNA methylation and childhood asthma. Journal of Allergy and Clinical Immunology, 2019, 143, 2062-2074.	1.5	147

Cilla SöderhÃ**¤**L

#	Article	IF	CITATIONS
37	Prenatal Particulate Air Pollution and DNA Methylation in Newborns: An Epigenome-Wide Meta-Analysis. Environmental Health Perspectives, 2019, 127, 57012.	2.8	111
38	DNA methylation is associated with inhaled corticosteroid response in persistent childhood asthmatics. Clinical and Experimental Allergy, 2019, 49, 1225-1234.	1.4	15
39	Stopping when knowing: use of snus and nicotine during pregnancy in Scandinavia. ERJ Open Research, 2019, 5, 00197-2018.	1.1	10
40	Nocturnal asthma is affected by genetic interactions between <i>RORA</i> and <i>NPSR1</i> . Pediatric Pulmonology, 2019, 54, 847-857.	1.0	9
41	Food and nutrient intake and adherence to dietary recommendations during pregnancy: a Nordic mother–child population-based cohort. Food and Nutrition Research, 2019, 63, .	1.2	22
42	Dry skin and skin barrier in early infancy. British Journal of Dermatology, 2019, 181, 218-219.	1.4	5
43	DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respiratory Medicine,the, 2018, 6, 379-388.	5.2	170
44	Environmental peanut exposure increases the risk of peanut sensitization in highâ€risk children. Clinical and Experimental Allergy, 2018, 48, 586-593.	1.4	32
45	Reduced <i><scp>CDHR</scp>3</i> expression in children wheezing with rhinovirus. Pediatric Allergy and Immunology, 2018, 29, 200-206.	1.1	20
46	Preventing Atopic Dermatitis and <scp>ALL</scp> ergies in Children—the Prevent <scp>ADALL</scp> study. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2063-2070.	2.7	68
47	Genetic and epigenetic regulation of YKL-40 in childhood. Journal of Allergy and Clinical Immunology, 2018, 141, 1105-1114.	1.5	27
48	Prognosis of Preschool Eczema and Factors of Importance for Remission. Acta Dermato-Venereologica, 2018, 98, 630-635.	0.6	7
49	PreDicta chip-based high resolution diagnosis of rhinovirus-induced wheeze. Nature Communications, 2018, 9, 2382.	5.8	34
50	17q21 variant increases the risk of exacerbations in asthmatic children despite inhaled corticosteroids use. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2083-2088.	2.7	22
51	IgE sensitization in relation to preschool eczema and filaggrin mutation. Journal of Allergy and Clinical Immunology, 2017, 140, 1572-1579.e5.	1.5	37
52	Rhinovirus and preschool wheeze. Pediatric Allergy and Immunology, 2017, 28, 513-520.	1.1	18
53	Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1373-1383.	2.5	107
54	Hypomethylation of HOXA4 promoter is common in Silver-Russell syndrome and growth restriction and associates with stature in healthy children. Scientific Reports, 2017, 7, 15693.	1.6	12

Cilla SöderhäL

#	Article	IF	CITATIONS
55	A longitudinal assessment of circulating <scp>YKL</scp> â€40 levels in preschool children with wheeze. Pediatric Allergy and Immunology, 2017, 28, 79-85.	1.1	15
56	The emerging landscape of dynamic DNA methylation in early childhood. BMC Genomics, 2017, 18, 25.	1.2	49
57	Neuropeptide S (NPS) variants modify the signaling and risk effects of NPS Receptor 1 (NPSR1) variants in asthma. PLoS ONE, 2017, 12, e0176568.	1.1	12
58	Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO ₂ Air Pollution Exposure. Environmental Health Perspectives, 2017, 125, 104-110.	2.8	176
59	DNA Methylation in Newborns and Maternal Smoking in Pregnancy: Genome-wide Consortium Meta-analysis. American Journal of Human Genetics, 2016, 98, 680-696.	2.6	717
60	Rhinovirusâ€specific antibody responses in preschool children with acute wheeze reflect severity of respiratory symptoms. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 1728-1735.	2.7	21
61	Globin mRNA reduction for whole-blood transcriptome sequencing. Scientific Reports, 2016, 6, 31584.	1.6	42
62	Targeted high-throughput sequencing of candidate genes for chronic obstructive pulmonary disease. BMC Pulmonary Medicine, 2016, 16, 146.	0.8	12
63	Increased YKL-40 and Chitotriosidase in Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 131-142.	2.5	107
64	DNA methylation loci associated with atopy and high serum IgE: a genome-wide application of recursive Random Forest feature selection. Genome Medicine, 2015, 7, 89.	3.6	58
65	Fine mapping analysis confirms and strengthens linkage of four chromosomal regions in familial hypospadias. European Journal of Human Genetics, 2015, 23, 516-522.	1.4	16
66	Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nature Communications, 2015, 6, 8804.	5.8	148
67	Associations between the 17q21 region and allergic rhinitis in 5 birth cohorts. Journal of Allergy and Clinical Immunology, 2015, 135, 573-576.e5.	1.5	15
68	Transcriptome analysis of controlled and therapy-resistant childhood asthma reveals distinct gene expression profiles. Journal of Allergy and Clinical Immunology, 2015, 136, 638-648.	1.5	59
69	Age-associated DNA methylation changes in immune genes, histone modifiers and chromatin remodeling factors within 5Âyears after birth in human blood leukocytes. Clinical Epigenetics, 2015, 7, 34.	1.8	65
70	Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nature Genetics, 2015, 47, 1449-1456.	9.4	529
71	GIMAP GTPase Family Genes: Potential Modifiers in Autoimmune Diabetes, Asthma, and Allergy. Journal of Immunology, 2015, 194, 5885-5894.	0.4	30
72	Risk of childhood asthma is associated with CpG-site polymorphisms, regional DNA methylation and mRNA levels at the GSDMB/ORMDL3 locus. Human Molecular Genetics, 2015, 24, 875-890.	1.4	66

Cilla SöderhÃ₽L

#	Article	IF	CITATIONS
73	<i><scp>NPSR</scp>1</i> polymorphisms influence recurrent abdominal pain in children: a populationâ€based study. Neurogastroenterology and Motility, 2014, 26, 1417-1425.	1.6	16
74	Subnormal levels of vitamin D are associated with acute wheeze in young children. Acta Paediatrica, International Journal of Paediatrics, 2014, 103, 856-861.	0.7	29
75	A Case with Bladder Exstrophy and Unbalanced X Chromosome Rearrangement. European Journal of Pediatric Surgery, 2014, 24, 353-359.	0.7	5
76	Infantile eczema: Prognosis and risk of asthma and rhinitis in preadolescence. Journal of Allergy and Clinical Immunology, 2014, 133, 594-596.e3.	1.5	33
77	Neuropeptide S receptor 1 (NPSR1) activates cancer-related pathways and is widely expressed in neuroendocrine tumors. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 465, 173-183.	1.4	19
78	Eczema severity in preadolescent children and its relation to sex, filaggrin mutations, asthma, rhinitis, aggravating factors and topical treatment: a report from the BAMSE birth cohort. British Journal of Dermatology, 2013, 168, 588-594.	1.4	79
79	Transcriptome analysis reveals upregulation of bitter taste receptors in severe asthmatics. European Respiratory Journal, 2013, 42, 65-78.	3.1	130
80	Genomeâ€wide association study of body mass index in 23Â000 individuals with and without asthma. Clinical and Experimental Allergy, 2013, 43, 463-474.	1.4	68
81	The chitinase-like protein YKL-40: AÂpossible biomarker of inflammation and airway remodeling in severe pediatric asthma. Journal of Allergy and Clinical Immunology, 2013, 132, 328-335.e5.	1.5	111
82	A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Human Molecular Genetics, 2013, 22, 4841-4856.	1.4	202
83	DNA Methylation in the Neuropeptide S Receptor 1 (NPSR1) Promoter in Relation to Asthma and Environmental Factors. PLoS ONE, 2013, 8, e53877.	1.1	35
84	Interaction between Retinoid Acid Receptor-Related Orphan Receptor Alpha (RORA) and Neuropeptide S Receptor 1 (NPSR1) in Asthma. PLoS ONE, 2013, 8, e60111.	1.1	28
85	Rule-Based Models of the Interplay between Genetic and Environmental Factors in Childhood Allergy. PLoS ONE, 2013, 8, e80080.	1.1	18
86	Genome-wide linkage analysis in families with infantile hypertrophic pyloric stenosis indicates novel susceptibility loci. Journal of Human Genetics, 2012, 57, 115-121.	1.1	20
87	Filaggrin mutations increase the risk for persistent dry skin and eczema independent of sensitization. Journal of Allergy and Clinical Immunology, 2012, 129, 1153-1155.	1.5	32
88	Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nature Genetics, 2012, 44, 187-192.	9.4	311
89	Centrosomal Localization of the Psoriasis Candidate Gene Product, CCHCR1, Supports a Role in Cytoskeletal Organization. PLoS ONE, 2012, 7, e49920.	1.1	26
90	Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease Susceptibility. PLoS ONE, 2012, 7, e41361.	1.1	860

Cilla SöderhÃ₽L

#	Article	IF	CITATIONS
91	A comprehensive analysis of the COL29A1 gene does not support a role in eczema. Journal of Allergy and Clinical Immunology, 2011, 127, 1187-1194.e7.	1.5	15
92	The asthma candidate gene NPSR1 mediates isoform specific downstream signalling. BMC Pulmonary Medicine, 2011, 11, 39.	0.8	20
93	Assessment of the Neuropeptide S System in Anxiety Disorders. Biological Psychiatry, 2010, 68, 474-483.	0.7	79
94	22q11.2 Microduplication in Two Patients with Bladder Exstrophy and Hearing Impairment. Journal of Pediatric Urology, 2010, 6, S20-S21.	0.6	0
95	22q11.2 microduplication in two patients with bladder exstrophy and hearing impairment. European Journal of Medical Genetics, 2010, 53, 61-65.	0.7	42
96	<i>MMP12,</i> Lung Function, and COPD in High-Risk Populations. New England Journal of Medicine, 2009, 361, 2599-2608.	13.9	315
97	No Association Between the Eczema Genes COL29A1 and IL31 and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2009, 15, 961-962.	0.9	3
98	A new susceptibility locus for hypospadias on chromosome 7q32.2-q36.1. Human Genetics, 2008, 124, 155-160.	1.8	11
99	Activating transcription factor 3: a hormone responsive gene in the etiology of hypospadias. European Journal of Endocrinology, 2008, 158, 729-739.	1.9	73
100	Variants in a Novel Epidermal Collagen Gene (COL29A1) Are Associated with Atopic Dermatitis. PLoS Biology, 2007, 5, e242.	2.6	153
101	Risk Factors for Hypospadias in the Estrogen Receptor 2 Gene. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 3712-3718.	1.8	42
102	Susceptibility loci for atopic dermatitis on chromosome 21 in a Swedish population. Allergy: European Journal of Allergy and Clinical Immunology, 2006, 61, 617-621.	2.7	15
103	Genome-wide linkage analysis of allergic rhinoconjunctivitis in a Swedish population. Clinical and Experimental Allergy, 2006, 36, 204-210.	1.4	15
104	Lack of association of the G protein–coupled receptor for asthma susceptibility gene with atopic dermatitis. Journal of Allergy and Clinical Immunology, 2005, 116, 220-221.	1.5	13
105	GENOME-WIDE LINKAGE ANALYSIS FOR HYPOSPADIAS SUSCEPTIBILITY GENES. Journal of Urology, 2004, 172, 1460-1463.	0.2	14
106	Susceptibility loci for atopic dermatitis on chromosomes 3, 13, 15, 17 and 18 in a Swedish population. Human Molecular Genetics, 2002, 11, 1539-1548.	1.4	91
107	Analysis of association and linkage for the interleukin-4 and interleukin-4 receptor balpha; regions in Swedish atopic dermatitis families. Clinical and Experimental Allergy, 2002, 32, 1199-1202.	1.4	20
108	Spectrum of Perforin Gene Mutations in Familial Hemophagocytic Lymphohistiocytosis. American Journal of Human Genetics, 2001, 68, 590-597.	2.6	246

Cilla SöderhÃ**¤**L

#	Article	IF	CITATIONS
109	Linkage and association to candidate regions in Swedish atopic dermatitis families. Human Genetics, 2001, 109, 129-135.	1.8	32
110	The Wiskott-Aldrich Syndrome Gene as a Candidate Gene for Atopic Dermatitis. Acta Dermato-Venereologica, 2001, 81, 340-342.	0.6	14
111	Characterization by phenotype of families with atopic dermatitis. Acta Dermato-Venereologica, 2000, 80, 106-10.	0.6	9
112	Screening for mutations in candidate genes for hypospadias. Urological Research, 1999, 27, 49-55.	1.5	56
113	Neuronal nitric oxide synthase, nNOS, is not linked to infantile hypertrophic pyloric stenosis in three families. Clinical Genetics, 1998, 53, 421-422.	1.0	12