Hao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6413485/publications.pdf

Version: 2024-02-01

759233 713466 23 706 12 21 citations h-index g-index papers 23 23 23 512 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Green upconversion luminescence of Er3+ and Yb3+ codoped Gd2Mo4O15 for optical temperature sensing. Journal of Alloys and Compounds, 2022, 895, 162516.	5.5	10
2	Cr3+ and Nd3+ co-activated garnet phosphor for NIR super broadband pc-LED application. Materials Research Bulletin, 2022, 151, 111797.	5.2	12
3	Efficient Broadband Near-Infrared CaMgGe ₂ O ₆ :Cr ³⁺ Phosphor for pc-LED. Inorganic Chemistry, 2022, 61, 8815-8822.	4.0	38
4	Highly efficient and thermally robust cyan-green phosphor-in-glass films for high-brightness laser lighting. Journal of Materials Chemistry C, 2021, 9, 12342-12352.	5 . 5	16
5	Enhanced upconversion luminescence and optical thermometry in Er ³⁺ /Yb ³⁺ heavily doped ZrO ₂ by stabilizing in the monoclinic phase. Materials Chemistry Frontiers, 2021, 5, 5142-5149.	5.9	6
6	Cr ³⁺ Activated Garnet Phosphor with Efficient Blue to Farâ€Red Conversion for pc‣ED. Advanced Optical Materials, 2021, 9, 2101134.	7.3	91
7	Phosphor-SiO2 composite films suitable for white laser lighting with excellent color rendering. Journal of the European Ceramic Society, 2020, 40, 2439-2444.	5.7	51
8	Enhancing IR to NIR upconversion emission in Er3+-sensitized phosphors by adding Yb3+ as a highly efficient NIR-emitting center for photovoltaic applications. CrystEngComm, 2020, 22, 229-236.	2.6	7
9	Multi-peaked broad-band red phosphor Y3Si6N11:Pr3+ for white LEDs and temperature sensing. Dalton Transactions, 2020, 49, 17779-17785.	3.3	7
10	On the luminescence of Ti ⁴⁺ and Eu ³⁺ in monoclinic ZrO ₂ : high performance optical thermometry derived from energy transfer. Journal of Materials Chemistry C, 2020, 8, 4518-4533.	5.5	29
11	Efficient Super Broadband NIR Ca ₂ LuZr ₂ Al ₃ O ₁₂ :Cr ³⁺ ,Yb ³⁺ Garnet Phosphor for pcâ€LED Light Source toward NIR Spectroscopy Applications. Advanced Optical Materials, 2020, 8, 1901684.	7.3	175
12	990 nm High-Power High-Beam-Quality DFB Laser With Narrow Linewidth Controlled by Gain-Coupled Effect. IEEE Photonics Journal, 2019, 11, 1-9.	2.0	4
13	Observation of a red Ce3+ center in SrLu2O4:Ce3+ phosphor and its potential application in temperature sensing. Dalton Transactions, 2019, 48, 5263-5270.	3.3	22
14	A High-Power and Highly Efficient Semi-Conductor MOPA System for Lithium Atomic Physics. Applied Sciences (Switzerland), 2019, 9, 471.	2.5	1
15	An Ultra-High-SMSR External-Cavity Diode Laser with a Wide Tunable Range around 1550 nm. Applied Sciences (Switzerland), 2019, 9, 4390.	2.5	9
16	An efficient blue phosphor Ba 2 Lu 5 B 5 O 17 :Ce 3+ stabilized by La 2 O 3 : Photoluminescence properties and potential use in white LEDs. Dyes and Pigments, 2018, 154, 121-127.	3.7	30
17	Er ³⁺ /Yb ³⁺ codoped phosphor Ba ₃ Y ₄ O ₉ with intense red upconversion emission and optical temperature sensing behavior. Journal of Materials Chemistry C, 2018, 6, 3459-3467.	5. 5	99
18	Phonon Energy Dependent Energy Transfer Upconversion for the Red Emission in the Er ³⁺ /Yb ³⁺ System. Journal of Physical Chemistry C, 2018, 122, 9611-9618.	3.1	42

#	Article	IF	CITATION
19	An efficient green phosphor of Ce ³⁺ and Tb ³⁺ -codoped Ba ₂ Lu ₅ B ₅ O ₁₇ and a model for elucidating the high thermal stability of the green emission. Journal of Materials Chemistry C, 2018, 6, 5984-5991.	5.5	39
20	Inhomogeneous-Broadening-Induced Intense Upconversion Luminescence in Tm3+ and Yb3+ Codoped Lu2O3–ZrO2 Disordered Crystals. Inorganic Chemistry, 2017, 56, 12291-12296.	4.0	4
21	High-Power Narrow-Linewidth Tunable 670.8-nm Master Oscillator Power Amplifier With High Efficiency. IEEE Photonics Journal, 2017, 9, 1-6.	2.0	0
22	High-Power Ultralow Divergence Edge-Emitting Diode Laser With Circular Beam. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 343-351.	2.9	14
23	A highâ€dense <scp>WDM</scp> light source based on mixingâ€modulated <scp>F</scp> abry– <scp>P</scp> erot laser diodes. Microwave and Optical Technology Letters, 2015, 57, 403-406.	1.4	0