MaÅ,gorzata Burek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6413012/publications.pdf

Version: 2024-02-01

		1040056	1058476	
16	196	9	14	
papers	citations	h-index	g-index	
16	16	16	258	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Trehalose coated nanocellulose to inhibit the infections by <i>S. aureus</i> . Polymer Chemistry, 2022, 13, 1502-1509.	3.9	6
2	Structurally analogous trehalose and sucrose glycopolymers – comparative characterization and evaluation of their effects on insulin fibrillation. Polymer Chemistry, 2022, 13, 1831-1843.	3.9	6
3	Trehalose-releasing nanogels: A step toward a trehalose delivery vehicle for autophagy stimulation. , 2022, 138, 212969.		7
4	Microchamber microfluidics combined with thermogellable glycomicrogels – Platform for single cells study in an artificial cellular microenvironment. Materials Science and Engineering C, 2021, 119, 111647.	7.3	7
5	The Core–Shell Structure, Not Sugar, Drives the Thermal Stabilization of Single-Enzyme Nanoparticles. Biomacromolecules, 2021, 22, 4569-4581.	5.4	10
6	Trehalose-Rich, Degradable Hydrogels Designed for Trehalose Release under Physiologically Relevant Conditions. Polymers, 2019, 11, 2027.	4.5	11
7	Study on protein release from hydrolytically degradable hydrogels governed by substituent effects in trehalose-based crosslinker and network properties. European Polymer Journal, 2019, 111, 123-133.	5 . 4	4
8	Synthetic Hydrogels with Covalently Incorporated Saccharides Studied for Biomedical Applications – 15 Year Overview. Polymer Reviews, 2018, 58, 537-586.	10.9	18
9	Preparation of Triglycerol from Glycerol and Epichlorohydrin at Room Temperature: Synthesis Optimization and Toxicity Studies. ACS Sustainable Chemistry and Engineering, 2018, 6, 13208-13216.	6.7	10
10	Functional (mikto)stars and star-comb copolymers from d-gluconolactone derivative: An efficient route for tuning theÂarchitecture and responsiveness to stimuli. Polymer, 2018, 146, 331-343.	3.8	9
11	Hydrogels with novel hydrolytically labile trehalose-based crosslinks: small changes – big differences in degradation behavior. Polymer Chemistry, 2018, 9, 3721-3726.	3.9	8
12	Thermoresponsive microgels containing trehalose as soft matrices for 3D cell culture. Biomaterials Science, 2017, 5, 234-246.	5.4	23
13	Thermoresponsive hydrogels with covalently incorporated trehalose as protein carriers. Reactive and Functional Polymers, 2017, 119, 105-115.	4.1	14
14	Poly(N-isopropylacrylamide) hydrogels cross-linked by $\hat{l}\pm,\hat{l}\pm$ -trehalose diacetals as thermo-responsive and acid-degradable carriers for drug delivery. Polymer Degradation and Stability, 2016, 129, 296-305.	5.8	17
15	Novel acid-degradable and thermo-sensitive poly(N -isopropylacrylamide) hydrogels cross-linked by $\hat{l}\pm,\hat{l}\pm$ -trehalose diacetals. Polymer, 2014, 55, 6460-6470.	3.8	24
16	In situ Raman spectroscopic studies on potential-induced structural changes in polyaniline thin films synthesized via surface-initiated electropolymerization on covalently modified gold surface. Vibrational Spectroscopy, 2014, 71, 30-36.	2.2	22