
Pedro G C Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6412780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple solutions in the theory of dc glow discharges. Plasma Sources Science and Technology, 2010, 19, 025019.	3.1	27
2	Three-Dimensional Modeling of Self-Organization in DC Glow Microdischarges. IEEE Transactions on Plasma Science, 2011, 39, 2190-2191.	1.3	24
3	Simulation of pre-breakdown discharges in high-pressure air. I: The model and its application to corona inception. Journal Physics D: Applied Physics, 2019, 52, 355206.	2.8	20
4	Analysing bifurcations encountered in numerical modelling of current transfer to cathodes of dc glow and arc discharges. Journal Physics D: Applied Physics, 2009, 42, 194010.	2.8	16
5	Computational and Experimental Study of Time-Averaged Characteristics of Positive and Negative DC Corona Discharges in Point-Plane Gaps in Atmospheric Air. IEEE Transactions on Plasma Science, 2020, 48, 4080-4088.	1.3	16
6	Self-organization in dc glow microdischarges in krypton: modelling and experiments. Plasma Sources Science and Technology, 2014, 23, 054012.	3.1	15
7	Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling. Physics of Plasmas, 2013, 20, 101613.	1.9	14
8	Calculation of ion mobilities by means of the two-temperature displaced-distribution theory. Journal Physics D: Applied Physics, 2002, 35, 1577-1584.	2.8	13
9	Modelling cathode spots in glow discharges in the cathode boundary layer geometry. Journal Physics D: Applied Physics, 2016, 49, 105201.	2.8	13
10	Self-consistent modeling of self-organized patterns of spots on anodes of DC glow discharges. Plasma Sources Science and Technology, 2018, 27, 05LT03.	3.1	13
11	Study of stability of dc glow discharges with the use of Comsol Multiphysics software. Journal Physics D: Applied Physics, 2011, 44, 415203.	2.8	10
12	A practical guide to modeling low-current quasi-stationary gas discharges: Eigenvalue, stationary, and time-dependent solvers. Journal of Applied Physics, 2021, 130, .	2.5	10
13	Transient Spots on Cathodes of High-Pressure Arc Discharges. IEEE Transactions on Plasma Science, 2008, 36, 1032-1033.	1.3	8
14	Computing Different Modes on Cathodes of DC Glow and Highâ€Pressure Arc Discharges: Timeâ€Dependent Versus Stationary Solvers. Plasma Processes and Polymers, 2017, 14, 1600122.	3.0	7
15	Simple computation of ignition voltage of self-sustaining gas discharges. Plasma Sources Science and Technology, 2020, 29, 125005.	3.1	7
16	Formation of stationary and transient spots on thermionic cathodes and its prevention. Journal Physics D: Applied Physics, 2008, 41, 144004.	2.8	5
17	Bifurcations in the theory of current transfer to cathodes of DC discharges and observations of transitions between different modes. Physics of Plasmas, 2018, 25, .	1.9	4
18	Comment on "Electric field measurements under DC corona discharges in ambient air by electric field induced second harmonic generation―[Appl. Phys. Lett. 115, 244101 (2019)]. Applied Physics Letters, 2020, 117, 026101.	3.3	4

Pedro G C Almeida

#	Article	IF	CITATIONS
19	Quenching thermal instability in the body of a thermionic arc cathode. Plasma Sources Science and Technology, 2013, 22, 012002.	3.1	1
20	A Simple Model of Distribution of Current Over Cathodes of Vacuum Circuit Breakers. IEEE Transactions on Plasma Science, 2019, 47, 3462-3469.	1.3	1
21	Real-time prevention of spots on thermionic cathodes in high-pressure ARC discharges. , 2012, , .		0
22	Predicting self-organization in DC glow microdischarges in different gases with the use of COMSOL Multiphysics. , 2012, , .		0
23	Computing DC glow and arc discharges by means of COMSOL MultiPhysics: Time-dependent vs. stationary solvers. , 2013, , .		0
24	Bifurcations of steady-state solutions in DC glow microdischarges. , 2015, , .		0
25	Three-dimensional modelling of self-organization phenomena in cathode boundary layer discharges using comsol multiphysics. , 2015, , .		0
26	Computing DC discharges in a wide range of currents with comsol multiphysics: Time-dependent solvers vs. stationary solvers. , 2015, , .		0
27	Self-organization in dc glow microdischarges in the cathode well configuration. , 2016, , .		0