Wang-Zhang Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/641269/publications.pdf

Version: 2024-02-01

		26610	22147
150	13,498	56	113
papers	citations	h-index	g-index
155	155	155	9189
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Changing the Behavior of Chromophores from Aggregationâ€Caused Quenching to Aggregationâ€Induced Emission: Development of Highly Efficient Light Emitters in the Solid State. Advanced Materials, 2010, 22, 2159-2163.	11.1	834
2	Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. Journal of Physical Chemistry C, 2010, 114, 6090-6099.	1.5	765
3	Biocompatible Nanoparticles with Aggregationâ€Induced Emission Characteristics as Farâ€Red/Nearâ€Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications. Advanced Functional Materials, 2012, 22, 771-779.	7.8	599
4	Restriction of Intramolecular Motions: The General Mechanism behind Aggregationâ€Induced Emission. Chemistry - A European Journal, 2014, 20, 15349-15353.	1.7	578
5	Achieving Persistent Room Temperature Phosphorescence and Remarkable Mechanochromism from Pure Organic Luminogens. Advanced Materials, 2015, 27, 6195-6201.	11.1	513
6	Efficient Solid Emitters with Aggregation-Induced Emission and Intramolecular Charge Transfer Characteristics: Molecular Design, Synthesis, Photophysical Behaviors, and OLED Application. Chemistry of Materials, 2012, 24, 1518-1528.	3.2	472
7	Synergy between Twisted Conformation and Effective Intermolecular Interactions: Strategy for Efficient Mechanochromic Luminogens with High Contrast. Advanced Materials, 2013, 25, 2837-2843.	11.1	422
8	Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today, 2020, 32, 275-292.	8.3	407
9	Effects of Substitution with Donor–Acceptor Groups on the Properties of Tetraphenylethene Trimer: Aggregation-Induced Emission, Solvatochromism, and Mechanochromism. Journal of Physical Chemistry C, 2013, 117, 7334-7347.	1.5	385
10	Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters. Chemical Science, 2015, 6, 4438-4444.	3.7	335
11	Clusteringâ€Triggered Emission of Nonconjugated Polyacrylonitrile. Small, 2016, 12, 6586-6592.	5.2	293
12	Hyperbranched polytriazoles with high molecular compressibility: aggregation-induced emission and superamplified explosive detection. Journal of Materials Chemistry, 2011, 21, 4056.	6.7	275
13	Achieving Persistent, Efficient, and Robust Roomâ€Temperature Phosphorescence from Pure Organics for Versatile Applications. Advanced Materials, 2019, 31, e1807222.	11.1	270
14	Conjugationâ€Induced Rigidity in Twisting Molecules: Filling the Gap Between Aggregationâ€Caused Quenching and Aggregationâ€Induced Emission. Advanced Materials, 2015, 27, 4496-4501.	11.1	268
15	Clustering-Triggered Emission and Persistent Room Temperature Phosphorescence of Sodium Alginate. Biomacromolecules, 2018, 19, 2014-2022.	2.6	248
16	Twisted D–π–A solid emitters: efficient emission and high contrast mechanochromism. Chemical Communications, 2013, 49, 4009.	2.2	239
17	Room temperature phosphorescence from natural products: Crystallization matters. Science China Chemistry, 2013, 56, 1178-1182.	4.2	236
18	Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Science China Chemistry, 2018, 61, 351-359.	4.2	214

#	Article	IF	CITATIONS
19	Nonconventional macromolecular luminogens with aggregationâ€induced emission characteristics. Journal of Polymer Science Part A, 2017, 55, 560-574.	2.5	211
20	Nonconventional luminophores: characteristics, advancements and perspectives. Chemical Society Reviews, 2021, 50, 12616-12655.	18.7	203
21	Colorâ€Tunable, Excitationâ€Dependent, and Timeâ€Dependent Afterglows from Pure Organic Amorphous Polymers. Advanced Materials, 2020, 32, e2004768.	11.1	181
22	Wrapping Carbon Nanotubes in Pyrene-Containing Poly(phenylacetylene) Chains:  Solubility, Stability, Light Emission, and Surface Photovoltaic Properties. Macromolecules, 2006, 39, 8011-8020.	2.2	158
23	Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence upon Concentration and Insight into the Emission Mechanism. Angewandte Chemie - International Edition, 2019, 58, 12667-12673.	7.2	154
24	Simple Biosensor with High Selectivity and Sensitivity: Thiolâ€Specific Biomolecular Probing and Intracellular Imaging by AIE Fluorogen on a TLC Plate through a Thiol–Ene Click Mechanism. Chemistry - A European Journal, 2010, 16, 8433-8438.	1.7	152
25	Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers. Materials Chemistry Frontiers, 2019, 3, 257-264.	3.2	150
26	Fumaronitrile-Based Fluorogen: Red to Near-Infrared Fluorescence, Aggregation-Induced Emission, Solvatochromism, and Twisted Intramolecular Charge Transfer. Journal of Physical Chemistry C, 2012, 116, 10541-10547.	1.5	147
27	A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water. Chemical Communications, 2009, , 4974.	2.2	144
28	Towards high efficiency solid emitters with aggregation-induced emission and electron-transport characteristics. Chemical Communications, 2011, 47, 11216.	2.2	136
29	Aggregation-induced emission of non-conjugated poly(amido amine)s: Discovering, luminescent mechanism understanding and bioapplication. Chinese Journal of Polymer Science (English Edition), 2015, 33, 680-687.	2.0	133
30	A clustering-triggered emission strategy for tunable multicolor persistent phosphorescence. Chemical Science, 2020, 11, 2926-2933.	3.7	127
31	Emission and Emissive Mechanism of Nonaromatic Oxygen Clusters. Macromolecular Rapid Communications, 2018, 39, e1800528.	2.0	125
32	Luminogenic Polyacetylenes and Conjugated Polyelectrolytes: Synthesis, Hybridization with Carbon Nanotubes, Aggregation-Induced Emission, Superamplification in Emission Quenching by Explosives, and Fluorescent Assay for Protein Quantitation. Macromolecules, 2009, 42, 9400-9411.	2.2	121
33	D–A Solid Emitter with Crowded and Remarkably Twisted Conformations Exhibiting Multifunctionality and Multicolor Mechanochromism. Journal of Physical Chemistry C, 2014, 118, 10998-11005.	1.5	120
34	Accessing Tunable Afterglows from Highly Twisted Nonaromatic Organic AlEgens via Effective Throughâ€Space Conjugation. Angewandte Chemie - International Edition, 2020, 59, 10018-10022.	7.2	120
35	Siloles symmetrically substituted on their 2,5-positions with electron-accepting and donating moieties: facile synthesis, aggregation-enhanced emission, solvatochromism, and device application. Chemical Science, 2012, 3, 549-558.	3.7	114
36	High efficiency luminescent liquid crystal: aggregation-induced emission strategy and biaxially oriented mesomorphic structure. Journal of Materials Chemistry, 2012, 22, 3323.	6.7	112

#	Article	IF	CITATIONS
37	Synthesis, clustering-triggered emission, explosive detection and cell imaging of nonaromatic polyurethanes. Molecular Systems Design and Engineering, 2018, 3, 364-375.	1.7	100
38	Disubstituted Polyacetylenes Containing Photopolymerizable Vinyl Groups and Polar Ester Functionality:Â Polymer Synthesis, Aggregation-Enhanced Emission, and Fluorescent Pattern Formation. Macromolecules, 2007, 40, 3159-3166.	2.2	99
39	Clustering-triggered Emission of Cellulose and Its Derivatives. Chinese Journal of Polymer Science (English Edition), 2019, 37, 409-415.	2.0	96
40	Electronic Interactions and Polymer Effect in the Functionalization and Solvation of Carbon Nanotubes by Pyrene- and Ferrocene-Containing Poly(1-alkyne)s. Macromolecules, 2008, 41, 701-707.	2.2	95
41	Aggregationâ€Induced Emission in a Hyperbranched Poly(silylenevinylene) and Superamplification in Its Emission Quenching by Explosives. Macromolecular Rapid Communications, 2010, 31, 834-839.	2.0	93
42	Clustering and halogen effects enabled red/near-infrared room temperature phosphorescence from aliphatic cyclic imides. Nature Communications, 2022, 13, 2658.	5.8	92
43	High Solid-State Efficiency Fluorescent Main Chain Liquid Crystalline Polytriazoles with Aggregation-Induced Emission Characteristics. Macromolecules, 2011, 44, 9618-9628.	2.2	88
44	Diethylamino functionalized tetraphenylethenes: structural and electronic modulation of photophysical properties, implication for the CIE mechanism and application to cell imaging. Journal of Materials Chemistry C, 2015, 3, 112-120.	2.7	86
45	Crystallization-induced phosphorescence of pure organic luminogens. Chinese Chemical Letters, 2016, 27, 1184-1192.	4.8	86
46	Crystallization-induced phosphorescence of benzils at room temperature. Science China Chemistry, 2013, 56, 1183-1186.	4.2	85
47	Nonconventional luminophores with unprecedented efficiencies and color-tunable afterglows. Materials Horizons, 2020, 7, 2105-2112.	6.4	80
48	Aggregation-Induced Dual Emission and Unusual Luminescence beyond Excimer Emission of Poly(ethylene terephthalate). Macromolecules, 2018, 51, 9035-9042.	2.2	73
49	Sulphur-containing nonaromatic polymers: clustering-triggered emission and luminescence regulation by oxidation. Polymer Chemistry, 2019, 10, 3639-3646.	1.9	65
50	Hybrids of Triphenylamine-Functionalized Polyacetylenes and Multiwalled Carbon Nanotubes: High Solubility, Strong Donorâ''Acceptor Interaction, and Excellent Photoconductivity. Macromolecules, 2008, 41, 8566-8574.	2.2	64
51	Construction of soft porous crystal with silole derivative: strategy of framework design, multiple structural transformability and mechanofluorochromism. Journal of Materials Chemistry, 2012, 22, 4290-4298.	6.7	64
52	Synthesis and self-assembly of tetraphenylethene and biphenyl based AIE-active triazoles. Journal of Materials Chemistry, 2012, 22, 10472.	6.7	62
53	Influences of processing methods and chemical treatments on fracture toughness of halloysite–epoxy composites. Materials & Design, 2012, 42, 471-477.	5.1	61
54	Intrinsic Luminescence from Nonaromatic Biomolecules. ChemPlusChem, 2020, 85, 1065-1080.	1.3	60

#	Article	IF	CITATIONS
55	Covalent Immobilization of Aggregationâ€Induced Emission Luminogens in Silica Nanoparticles Through Click Reaction. Small, 2011, 7, 1448-1455.	5.2	59
56	Conjugated Hyperbranched Poly(aryleneethynylene)s: Synthesis, Photophysical Properties, Superquenching by Explosive, Photopatternability, and Tunable High Refractive Indices. Chemistry - A European Journal, 2012, 18, 2847-2856.	1.7	57
57	AIE-active, highly thermally and morphologically stable, mechanochromic and efficient solid emitters for low color temperature OLEDs. Journal of Materials Chemistry C, 2014, 2, 7552-7560.	2.7	56
58	Regioselective Alkyne Polyhydrosilylation: Synthesis and Photonic Properties of Poly(silylenevinylene)s. Macromolecules, 2011, 44, 5977-5986.	2.2	52
59	Accessing Excitation―and Timeâ€Responsive Afterglows from Aqueous Processable Amorphous Polymer Films through Doping and Energy Transfer. Advanced Materials, 2022, 34, .	11.1	52
60	High hole mobility of 1,2-bis[4′-(diphenylamino)biphenyl-4-yl]-1,2-diphenylethene in field effect transistor. Chemical Communications, 2011, 47, 6924.	2.2	50
61	Effective Internal and External Modulation of Nontraditional Intrinsic Luminescence. Small, 2020, 16, e2005035.	5.2	47
62	Functional Perovskite Hybrid of Polyacetylene Ammonium and Lead Bromide:Â Synthesis, Light Emission, and Fluorescence Imagining. Journal of Physical Chemistry B, 2006, 110, 21701-21709.	1,2	46
63	1-((12-Bromododecyl)oxy)-4-((4-(4-pentylcyclohexyl)phenyl)ethynyl) benzene: Liquid crystal with aggregation-induced emission characteristics. Science China Chemistry, 2013, 56, 1191-1196.	4.2	46
64	Thiol–bromo click polymerization for multifunctional polymers: synthesis, light refraction, aggregation-induced emission and explosive detection. Polymer Chemistry, 2015, 6, 97-105.	1.9	46
65	Hydrogen bonding boosted the persistent room temperature phosphorescence of pure organic compounds for multiple applications. Journal of Materials Chemistry C, 2019, 7, 9095-9101.	2.7	46
66	Induced Chain Alignment, Efficient Energy Transfer, and Enhanced Light Emission in Functional Polyacetylenea^Perovskite Hybrids. Macromolecules, 2005, 38, 8127-8130.	2.2	45
67	Enhanced chemical durability of perfluorosulfonic acid membranes through incorporation of terephthalic acid as radical scavenger. Journal of Membrane Science, 2013, 432, 66-72.	4.1	44
68	Functionalization of Disubstituted Polyacetylenes through Polymer Reactions:  Syntheses of Functional Poly(1-phenyl-1-alkyne)s. Macromolecules, 2006, 39, 467-469.	2.2	42
69	Graphene nanoribbons as a novel support material for high performance fuel cell electrocatalysts. International Journal of Hydrogen Energy, 2013, 38, 13230-13237.	3.8	41
70	Pure Organic Persistent Roomâ€Temperature Phosphorescence at both Crystalline and Amorphous States. ChemPhysChem, 2018, 19, 2389-2396.	1.0	41
71	Direct Polymerization of Highly Polar Acetylene Derivatives and Facile Fabrication of Nanoparticle-Decorated Carbon Nanotubes. Macromolecules, 2009, 42, 52-61.	2.2	39
72	Crystallization-Induced Red Phosphorescence and Grinding-Induced Blue-Shifted Emission of a Benzobis(1,2,5-thiadiazole)–Thiophene Conjugate. ACS Omega, 2019, 4, 344-351.	1.6	39

#	Article	IF	CITATIONS
73	Clusteringâ€Triggered Efficient Roomâ€Temperature Phosphorescence from Nonconventional Luminophores. ChemPhysChem, 2020, 21, 36-42.	1.0	39
74	Processable Hybrids of Ferrocene-Containing Poly(phenylacetylene)s and Carbon Nanotubes: Fabrication and Properties. Journal of Physical Chemistry B, 2008, 112, 8896-8905.	1.2	38
75	Clustering-Triggered Emission of Poly(<i>N</i> -hydroxysuccinimide Methacrylate). Acta Chimica Sinica, 2016, 74, 935.	0.5	38
76	Graphene nanoribbons hybridized carbon nanofibers: remarkably enhanced graphitization and conductivity, and excellent performance as support material for fuel cell catalysts. Nanoscale, 2014, 6, 1377-1383.	2.8	37
77	Crystallization-induced phosphorescence, remarkable mechanochromism, and grinding enhanced emission of benzophenone-aromatic amine conjugates. Chinese Chemical Letters, 2018, 29, 1533-1536.	4.8	36
78	Rational bridging affording luminogen with AIE features and high field effect mobility. Journal of Materials Chemistry C, 2015, 3, 4903-4909.	2.7	35
79	Enhanced dispersion of nanotubes in organic solvents by donor–acceptor interaction between functionalized poly(phenylacetylene) chains and carbon nanotube walls. Journal of Polymer Science Part A, 2009, 47, 4995-5005.	2.5	34
80	Perfluorinated sulfonic acid ionomer/poly(N-vinylpyrrolidone) nanofiber membranes: Electrospinning fabrication, water stability, and metal ion removal applications. Reactive and Functional Polymers, 2011, 71, 1102-1109.	2.0	33
81	Clustering-Triggered Emission and Luminescence Regulation by Molecular Arrangement of Nonaromatic Polyamide-6. Journal of Physical Chemistry B, 2020, 124, 8928-8936.	1.2	32
82	Detection of the critical micelle concentration of cationic and anionic surfactants based on aggregation-induced emission property of hexaphenylsilole derivatives. Science in China Series B: Chemistry, 2009, 52, 755-759.	0.8	31
83	Functional Polyacetylenes Carrying Mesogenic and Polynuclear Aromatic Pendants: Polymer Synthesis, Hybridization with Carbon Nanotubes, Liquid Crystallinity, Light Emission, and Electrical Conductivity. Macromolecules, 2009, 42, 2523-2531.	2.2	30
84	Reevaluating Protein Photoluminescence: Remarkable Visible Luminescence upon Concentration and Insight into the Emission Mechanism. Angewandte Chemie, 2019, 131, 12797-12803.	1.6	30
85	Highly Efficient Luminescent Liquid Crystal with Aggregation-Induced Energy Transfer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3516-3523.	4.0	30
86	Composites of quaternized poly(pyridylacetylene) and silver nanoparticles: Nanocomposite preparation, conductivity and photoinduced patterning. Journal of Materials Chemistry, 2011, 21, 13627.	6.7	28
87	Endoplasmic Reticulum–Targeted Fluorescent Nanodot with Large Stokes Shift for Vesicular Transport Monitoring and Longâ€Term Bioimaging. Small, 2018, 14, e1800223.	5.2	28
88	Polymorphic Pure Organic Luminogens with Throughâ€Space Conjugation and Persistent Roomâ€Temperature Phosphorescence. Chemistry - an Asian Journal, 2019, 14, 884-889.	1.7	28
89	Phase Behaviors of Side-Chain Liquid Crystalline Polyacetylenes with Different Length of Spacer: Where Will the Decoupling Effect Appear?. Macromolecules, 2015, 48, 2886-2893.	2.2	27
90	D-A structured high efficiency solid luminogens with tunable emissions: Molecular design and photophysical properties. Chinese Chemical Letters, 2017, 28, 2133-2138.	4.8	26

#	Article	IF	CITATIONS
91	Fabrication of polymeric honeycomb microporous films: breath figures strategy and stabilization of water droplets by fluorinated diblock copolymer micelles. Journal of Materials Science, 2012, 47, 6862-6871.	1.7	25
92	Achieving Hybridized Local and Chargeâ€Transfer Excited State and Excellent OLED Performance Through Facile Doping. Advanced Optical Materials, 2017, 5, 1700466.	3.6	25
93	Hybridization of thiol-functionalized poly(phenylacetylene) with cadmium sulfide nanorods: improved miscibility and enhanced photoconductivity. Chemical Communications, 2007, , 1322.	2.2	23
94	Synthesis of Sulfur-Containing Polyacetylenes and Fabrication of Their Hybrids with ZnO Nanoparticles. Macromolecules, 2008, 41, 3874-3883.	2.2	23
95	Chitosan rods reinforced by aligned multiwalled carbon nanotubes via magnetic-field-assistant in situ precipitation. Carbohydrate Polymers, 2011, 84, 1126-1132.	5.1	23
96	Perfluorosulfonate ionomer membranes with improved through-plane proton conductivity fabricated under magnetic field. Journal of Membrane Science, 2012, 423-424, 267-274.	4.1	23
97	Clustering-triggered Emission of Nonaromatic Polymers with Multitype Heteroatoms and Effective Hydrogen Bonding. Chemical Research in Chinese Universities, 2021, 37, 177-182.	1.3	23
98	Aggregation-induced emission of an aminated silole: A fluorescence probe for monitoring layer-by-layer self-assembling processes of polyelectrolytes. Journal of Luminescence, 2009, 129, 19-23.	1.5	22
99	Fluorine-containing block copolymer particles with surface and internal hierarchical microphase separation structures. Soft Matter, 2012, 8, 2471.	1.2	22
100	Surface characteristics and blood compatibility of PVDF/PMMA membranes. Journal of Materials Science, 2012, 47, 5030-5040.	1.7	22
101	Evidence for a crystallite-rich skin on perfluorosulfonate ionomer membranes. RSC Advances, 2013, 3, 8947.	1.7	22
102	Efficient persistent room temperature phosphorescence achieved through Zn 2+ doped sodium carboxymethyl cellulose composites. Composites Communications, 2018, 8, 106-110.	3.3	20
103	Hierarchical self-assembly of fluorine-containing diblock copolymer: From onion-like nanospheres to superstructured microspheres. Polymer, 2011, 52, 1191-1196.	1.8	19
104	Unprecedented and Readily Tunable Photoluminescence from Aliphatic Quaternary Ammonium Salts**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
105	High efficiency D-A structured luminogen with aggregation-induced emission and mechanochromic characteristics. Science Bulletin, 2013, 58, 2719-2722.	1.7	18
106	A gelable pure organic luminogen with fluorescence-phosphorescence dual emission. Science China Chemistry, 2017, 60, 806-812.	4.2	18
107	Aggregation-induced phosphorescence and mechanochromic luminescence of a tetraphenylethene-based gold(I) isocyanide complex. Chinese Chemical Letters, 2017, 28, 1300-1305.	4.8	18
108	Polymorphism dependent triplet-involved emissions of a pure organic luminogen. Chinese Chemical Letters, 2019, 30, 933-936.	4.8	18

#	Article	IF	CITATIONS
109	Robust and color-tunable afterglows from guanidine derivatives. Chemical Communications, 2022, 58, 545-548.	2.2	17
110	Synthesis and Characterization of Polystyrene/Nanosilica Organic-Inorganic Hybrid1. Chemical Research in Chinese Universities, 2006, 22, 797-802.	1.3	16
111	Fluorene―and benzimidazoleâ€based blue lightâ€emitting copolymers: Synthesis, photophysical properties, and PLED applications. Journal of Polymer Science Part A, 2012, 50, 2172-2181.	2.5	14
112	Enhanced stability of PFSA membranes for fuel cells: Combined effect between supercritical carbon dioxide treatment and radical scavenger incorporation. Polymer Degradation and Stability, 2014, 107, 106-112.	2.7	14
113	Towards high-performance hybrid hydrophilic membranes: chemical anchoring of hydroxyl-rich nanoparticles on PVDF membranes via a silane coupling agent. Journal of Materials Science, 2017, 52, 11737-11748.	1.7	12
114	Accessing Tunable Afterglows from Highly Twisted Nonaromatic Organic AlEgens via Effective Throughâ€6pace Conjugation. Angewandte Chemie, 2020, 132, 10104-10108.	1.6	12
115	A Novel Approach to Prepare Uniaxially Aligned Nanofibers and Longitudinally Aligned Seamless Tubes Through Electrospinning. Macromolecular Materials and Engineering, 2012, 297, 604-608.	1.7	11
116	A new method to prepare high performance perfluorinated sulfonic acid ionomer/porous expanded polytetrafluoroethylene composite membranes based on perfluorinated sulfonyl fluoride polymer solution. Journal of Power Sources, 2013, 243, 392-395.	4.0	11
117	Systematic stability investigation of perfluorosulfonic acid membranes with varying ion exchange capacities for fuel cell applications. RSC Advances, 2014, 4, 6369.	1.7	11
118	Enabling carbon nanofibers with significantly improved graphitization and homogeneous catalyst deposition for high performance electrocatalysts. Electrochimica Acta, 2015, 152, 383-390.	2.6	11
119	Luminescent halogen clusters. Cell Reports Physical Science, 2022, 3, 100593.	2.8	11
120	Michael Polyaddition Approach Towards Sulfur Enriched Nonaromatic Polymers with Fluorescenceâ€Phosphorescence Dual Emission. Macromolecular Rapid Communications, 2021, 42, e2100036.	2.0	10
121	High quality pristine perfluorosulfonated ionomer membranes prepared from perfluorinated sulfonyl fluoride solution. RSC Advances, 2012, 2, 5950.	1.7	9
122	A novel triphenylacrylonitrile based AlEgen for high contrast mechanchromism and bicolor electroluminescence. RSC Advances, 2018, 8, 710-716.	1.7	9
123	Time-Dependent Afterglow from a Single Component Organic Luminogen. Research, 2021, 2021, 9757460.	2.8	9
124	Synthesis of polyelectrolytic polyacetylene derivatives by quaternization of poly(pyridylacetylene). Chinese Journal of Polymer Science (English Edition), 2011, 29, 133-140.	2.0	8
125	Polymorphism-Dependent Emission of Nonaromatic Luminophores. Acta Chimica Sinica, 2021, 79, 93.	0.5	8
126	Lowâ€molecularâ€weight polytetrafluoroethylene bearing thermally stable perfluoroalkyl endâ€groups prepared in supercritical carbon dioxide. Polymer International, 2012, 61, 901-908.	1.6	7

#	Article	IF	CITATIONS
127	Evaluation of electrospun nanofiber formation of perfluorosulfonic acid and poly (N-vinylpyrrolidone) through solution rheology. Journal of Materials Science, 2011, 46, 7501-7510.	1.7	5
128	Order–order phase transition and transformation in co-assembled particles from fluorinated FA/FB type diblock copolymers. Soft Matter, 2012, 8, 8405.	1.2	5
129	Rheological study on tetrafluoroethylene/hexafluoropropylene copolymer and its implication for processability. Journal of Applied Polymer Science, 2012, 125, 3361-3367.	1.3	5
130	Biocompatibility and anti-cracking performance of perfluorocarboxylic acid ionomer membranes for implantable biosensors. Journal of Materials Science, 2012, 47, 5181-5189.	1.7	5
131	Thermal-mechanical stability of ethylene tetrafluoroethylene alternating copolymer, and modification thereof. Journal of Polymer Research, 2012, 19, 1.	1.2	5
132	Copolymerizations of tetrafluoroethylene and perfluoropropylvinyl ether in supercritical carbon dioxide: Polymer synthesis, characterization, and thermal properties. Journal of Applied Polymer Science, 2012, 124, 1785-1795.	1.3	5
133	Properties of precursor solution cast PFSI membranes with various ion exchange capacities and annealing temperatures. RSC Advances, 2013, 3, 7289.	1.7	5
134	Pure Organic Luminogens with Room Temperature Phosphorescence. ACS Symposium Series, 2016, , 1-26.	0.5	5
135	Unprecedented and Readily Tunable Photoluminescence from Aliphatic Quaternary Ammonium Salts**. Angewandte Chemie, 2022, 134, .	1.6	5
136	Synthesis and properties of poly(1-phenyl-1-octyne)s containing stereogenic and chromophoric pendant groups. Science in China Series B: Chemistry, 2009, 52, 1691-1702.	0.8	4
137	Melt rheological properties of ETFE: an attempt to illuminate the fluorine-substitution effect. Polymer Bulletin, 2012, 69, 375-388.	1.7	4
138	Enhancing the anti-cracking performance of perfluorosulfonic acid membranes for implantable biosensors through supercritical CO2 treatment. Journal of Materials Science, 2012, 47, 3602-3606.	1.7	4
139	Tetrafluoroethylene Copolymers with Sulfonyl Fluoride Pendants: Syntheses in Supercritical Carbon Dioxide, Polymerization Behaviors, and Properties. Macromolecular Chemistry and Physics, 2011, 212, 1497-1509.	1.1	3
140	Thermally Induced Transfiguration of Polymer Nanowires under Irradiation of Electron Beams. Journal of Physical Chemistry C, 2009, 113, 14623-14627.	1.5	2
141	Radical homopolymerization of tetrafluoroethylene initiated by perfluorodiacyl peroxide in supercritical carbon dioxide: Reaction mechanism and initiation kinetics. European Polymer Journal, 2012, 48, 1431-1438.	2.6	2
142	Crystallization-Induced Phosphorescence for Purely Organic Phosphors at Room Temperature and Liquid Crystals with Aggregation-Induced Emission Characteristics. , 2013, , 43-60.		2
143	Metal–Organic Framework for Efficient Electron Injection. Advanced Optical Materials, 2021, 9, 2002053.	3.6	2
144	SYNTHESIS AND CHARACTERIZATION OF A POLYPHENYLACETYLENE WITH DENDRON PENDANTS. Acta Polymerica Sinica, 2009, 009, 293-297.	0.0	1

#	Article	IF	CITATIONS
145	Long Persistent Luminescence of Meltâ€Grown Bulkâ€Sized Doped Organic Crystals. Advanced Optical Materials, 0, , 2102355.	3.6	1
146	Main chain liquid crystalline polytriazoles with aggregation-induced emission characteristics: click polymerization, mesomorphic packing, and solid state emission. , 2010, , .		0
147	Biomedical applications of luminogens: general discussion. Faraday Discussions, 2017, 196, 403-414.	1.6	0
148	SYNTHESIS OF POLY{< >N -[2-(4′-BENZYLTHIOACETATE) PROPIONYL]-< >p -AMINOPHENYLACETYLENE} AND ITS THERMAL STABILITY AND FORMATION OF ORDERED NANOSTRUCTURE. Acta Polymerica Sinica, 2009, 009, 1031-1036.	0.0	0
149	SOLUBILITY IMPROVEMENT AND SURFACE FUNCTIONALIZATION OF MULTI-WALLED CARBON NANOTUBES BY A THIOL-FUNCTIONALIZED POLY(PHENYLACETYLENE) DERIVATIVE. Acta Polymerica Sinica, 2009, 007, 897-900.	0.0	0
150	IMPROVEMENT OF THE SOLUBILITY OF MULTIWALLED CARBON NANOTUBES WITH DISUBSTITUTED POLYACETYLENES BEARING DIFFERENT SIDE-CHAINS. Acta Polymerica Sinica, 2009, 007, 901-904.	0.0	0