
Onno C Meijer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6412507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hippocampal glucocorticoid target genes associated with enhancement of memory consolidation. European Journal of Neuroscience, 2022, 55, 2666-2683.	2.6	20
2	An emerging role for microglia in stressâ€effects on memory. European Journal of Neuroscience, 2022, 55, 2491-2518.	2.6	23
3	The Cortisol Response of Male and Female Choroidal Endothelial Cells: Implications for Central Serous Chorioretinopathy. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 512-524.	3.6	12
4	Cell type specificity of glucocorticoid signaling in the adult mouse hippocampus. Journal of Neuroendocrinology, 2022, 34, e13072.	2.6	20
5	Variation in glucocorticoid sensitivity and the relation with obesity. Obesity Reviews, 2022, 23, e13401.	6.5	14
6	Mineralocorticoid receptor status in the human brain after dexamethasone treatment: a single case study. Endocrine Connections, 2022, , .	1.9	3
7	Choroidal arteriovenous anastomoses: a hypothesis for the pathogenesis of central serous chorioretinopathy and other pachychoroid disease spectrum abnormalities. Acta Ophthalmologica, 2022, 100, 946-959.	1.1	22
8	Hepatic glucocorticoidâ€induced transcriptional regulation is androgenâ€dependent after chronic but not acute glucocorticoid exposure. FASEB Journal, 2022, 36, e22251.	0.5	2
9	Gene expression changes in the brain of a Cushing's syndrome mouse model. Journal of Neuroendocrinology, 2022, 34, e13124.	2.6	8
10	Brain mineralocorticoid receptor in health and disease: From molecular signalling to cognitive and emotional function. British Journal of Pharmacology, 2022, 179, 3205-3219.	5.4	20
11	Response to Letter to the Editor From Behar-Cohen et al.: The Cortisol Response of Male and Female Choroidal Endothelial Cells: Implications for Central Serous Chorioretinopathy. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2213-e2214.	3.6	2
12	Longâ€ŧerm effects of glucocorticoid excess on the brain. Journal of Neuroendocrinology, 2022, 34, .	2.6	23
13	Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiology of Stress, 2022, 18, 100455.	4.0	24
14	Application of a pharmacological transcriptome filter identifies a shortlist of mouse glucocorticoid receptor target genes associated with memory consolidation. Neuropharmacology, 2022, 216, 109186.	4.1	4
15	Experience and activity-dependent control of glucocorticoid receptors during the stress response in large-scale brain networks. Stress, 2021, 24, 130-153.	1.8	13
16	Effects of Long-Term Endogenous Corticosteroid Exposure on Brain Volume and Glial Cells in the AdKO Mouse. Frontiers in Neuroscience, 2021, 15, 604103.	2.8	24
17	Conditioning cortisol in healthy young women – A randomized controlled trial. Psychoneuroendocrinology, 2021, 124, 105081.	2.7	5
18	Central serous chorioretinopathy in active endogenous Cushing's syndrome. Scientific Reports, 2021, 11, 2748.	3.3	10

#	Article	IF	CITATIONS
19	Molecular characterization of the stress network in individuals at risk for schizophrenia. Neurobiology of Stress, 2021, 14, 100307.	4.0	5
20	A physiological glucocorticoid rhythm is an important regulator of brown adipose tissue function. Molecular Metabolism, 2021, 47, 101179.	6.5	12
21	The development of novel glucocorticoid receptor antagonists: From rational chemical design to therapeutic efficacy in metabolic disease models. Pharmacological Research, 2021, 168, 105588.	7.1	9
22	Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5. Cell Reports, 2021, 35, 109185.	6.4	42
23	Carbonyl reductase 1 amplifies glucocorticoid action in adipose tissue and impairs glucose tolerance in lean mice. Molecular Metabolism, 2021, 48, 101225.	6.5	4
24	Adrenal Vein Sampling in a Patient With Primary Hyperaldosteronism and Severe Contrast Allergy. Journal of the Endocrine Society, 2021, 5, bvab122.	0.2	4
25	Brain areas affected by intranasal oxytocin show higher oxytocin receptor expression. European Journal of Neuroscience, 2021, 54, 6374-6381.	2.6	7
26	Loss of glucocorticoid rhythm induces an osteoporotic phenotype in female mice. Aging Cell, 2021, 20, e13474.	6.7	9
27	An Advanced Transcriptional Response to Corticosterone After Single Prolonged Stress in Male Rats. Frontiers in Behavioral Neuroscience, 2021, 15, 756903.	2.0	2
28	The DEXA-CORT trial: study protocol of a randomised placebo-controlled trial of hydrocortisone in patients with brain tumour on the prevention of neuropsychiatric adverse effects caused by perioperative dexamethasone. BMJ Open, 2021, 11, e054405.	1.9	3
29	Progression and Classification of Granular Osmiophilic Material (GOM) Deposits in Functionally Characterized Human NOTCH3 Transgenic Mice. Translational Stroke Research, 2020, 11, 517-527.	4.2	16
30	Glucocorticoid receptors signaling impairment potentiates amyloidâ€î² oligomersâ€induced pathology in an acute model of Alzheimer's disease. FASEB Journal, 2020, 34, 1150-1168.	0.5	23
31	Exposure-related cortisol predicts outcome of psychotherapy in veterans with treatment-resistant posttraumatic stress disorder. Journal of Psychiatric Research, 2020, 130, 387-393.	3.1	11
32	Effects of RU486 treatment after single prolonged stress depend on the post-stress interval. Molecular and Cellular Neurosciences, 2020, 108, 103541.	2.2	3
33	Sex and Stress Steroid Crosstalk Reviewed: Give Us More. Journal of the Endocrine Society, 2020, 4, bvaa113.	0.2	3
34	Glucocorticoid Sexual Dimorphism in Metabolism: Dissecting the Role of Sex Hormones. Trends in Endocrinology and Metabolism, 2020, 31, 357-367.	7.1	32
35	The selective glucocorticoid receptor antagonist CORT125281 has tissue-specific activity. Journal of Endocrinology, 2020, 246, 79-92.	2.6	16
36	Glucocorticoid and Mineralocorticoid Receptors in the Brain: A Transcriptional Perspective. Journal of the Endocrine Society, 2019, 3, 1917-1930.	0.2	66

#	Article	IF	CITATIONS
37	Sex-Dependent Modulation of Acute Stress Reactivity After Early Life Stress in Mice: Relevance of Mineralocorticoid Receptor Expression. Frontiers in Behavioral Neuroscience, 2019, 13, 181.	2.0	22
38	Identification of mineralocorticoid receptor target genes in the mouse hippocampus. Journal of Neuroendocrinology, 2019, 31, e12735.	2.6	22
39	Late glucocorticoid receptor antagonism changes the outcome of adult life stress. Psychoneuroendocrinology, 2019, 107, 169-178.	2.7	17
40	Mechanistic Insights in NeuroD Potentiation of Mineralocorticoid Receptor Signaling. International Journal of Molecular Sciences, 2019, 20, 1575.	4.1	17
41	Corticosteroid Action in the Brain: The Potential of Selective Receptor Modulation. Neuroendocrinology, 2019, 109, 266-276.	2.5	41
42	A Model of Glucocorticoid Receptor Interaction With Coregulators Predicts Transcriptional Regulation of Target Genes. Frontiers in Pharmacology, 2019, 10, 214.	3.5	13
43	Resetting the Stress System with a Mifepristone Challenge. Cellular and Molecular Neurobiology, 2019, 39, 503-522.	3.3	32
44	Conditioned hormonal responses: A systematic review in animals and humans. Frontiers in Neuroendocrinology, 2019, 52, 206-218.	5.2	13
45	Corticosteroid Receptors in the Brain: Transcriptional Mechanisms for Specificity and Context-Dependent Effects. Cellular and Molecular Neurobiology, 2019, 39, 539-549.	3.3	45
46	Three percent annually on systemic glucocorticoids: facts, worries and perspectives. European Journal of Endocrinology, 2019, 181, C23-C28.	3.7	6
47	Androgens modulate glucocorticoid receptor activity in adipose tissue and liver. Journal of Endocrinology, 2019, 240, 51-63.	2.6	30
48	Effects of Glucocorticoids on the Brain. , 2019, , 360-368.		0
49	Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Frontiers in Neuroendocrinology, 2018, 49, 124-145.	5.2	175
50	Glucocorticoid receptor modulators. Annales D'Endocrinologie, 2018, 79, 107-111.	1.4	58
51	A Diurnal Rhythm in Brown Adipose Tissue Causes Rapid Clearance and Combustion of Plasma Lipids at Wakening. Cell Reports, 2018, 22, 3521-3533.	6.4	68
52	Local delivery of liposomal prednisolone leads to an anti-inflammatory profile in renal ischaemia–reperfusion injury in the rat. Nephrology Dialysis Transplantation, 2018, 33, 44-53.	0.7	26
53	Selective Glucocorticoid Receptor Antagonist CORT125281 Activates Brown Adipose Tissue and Alters Lipid Distribution in Male Mice. Endocrinology, 2018, 159, 535-546.	2.8	42
54	Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut, 2018, 67, 1269-1279.	12.1	401

#	Article	IF	CITATIONS
55	Selective glucocorticoid receptor modulation prevents and reverses non-alcoholic fatty liver disease in male mice. Endocrinology, 2018, 159, 3925-3936.	2.8	27
56	Effects of Steroid Hormones on Brain. , 2018, , 36-41.		0
57	The Effect of Corticosteroids on Human Choroidal Endothelial Cells: A Model to Study Central Serous Chorioretinopathy. , 2018, 59, 5682.		19
58	How Metabolic State May Regulate Fear: Presence of Metabolic Receptors in the Fear Circuitry. Frontiers in Neuroscience, 2018, 12, 594.	2.8	10
59	NeuroD Factors Discriminate Mineralocorticoid From Glucocorticoid Receptor DNA Binding in the Male Rat Brain. Endocrinology, 2017, 158, 1511-1522.	2.8	56
60	Association of a Haplotype in the <i>NR3C2</i> Gene, Encoding the Mineralocorticoid Receptor, With Chronic Central Serous Chorioretinopathy. JAMA Ophthalmology, 2017, 135, 446.	2.5	61
61	Glucocorticoid Regulation of Neurocognitive and Neuropsychiatric Function. , 2017, , 27-41.		Ο
62	A Refill for the Brain Mineralocorticoid Receptor: The Benefit of Cortisol Add-On to Dexamethasone Therapy. Endocrinology, 2017, 158, 448-454.	2.8	25
63	Carbonyl reductase 1 catalyzes 20β-reduction of glucocorticoids, modulating receptor activation and metabolic complications of obesity. Scientific Reports, 2017, 7, 10633.	3.3	15
64	Spectrum of retinal abnormalities in renal transplant patients using chronic low-dose steroids. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 2443-2449.	1.9	11
65	Genomic Aspects of Corticosteroid Action in the Brain. , 2017, , 149-157.		Ο
66	Circadian and ultradian glucocorticoid rhythmicity: Implications for the effects of glucocorticoids on neural stem cells and adult hippocampal neurogenesis. Frontiers in Neuroendocrinology, 2016, 41, 44-58.	5.2	46
67	Nuclear Receptor Coactivators. Epigenetics and Human Health, 2016, , 73-95.	0.2	0
68	Identification of a selective glucocorticoid receptor modulator that prevents both dietâ€induced obesity and inflammation. British Journal of Pharmacology, 2016, 173, 1793-1804.	5.4	35
69	Central serous chorioretinopathy in primary hyperaldosteronism. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 2033-2042.	1.9	28
70	lsoform switching of steroid receptor co-activator-1 attenuates glucocorticoid-induced anxiogenic amygdala CRH expression. Molecular Psychiatry, 2016, 21, 1733-1739.	7.9	37
71	Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory. Psychoneuroendocrinology, 2016, 67, 207-215.	2.7	43
72	Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2738-2743.	7.1	73

#	Article	IF	CITATIONS
73	Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer. Endocrine-Related Cancer, 2016, 23, 35-45.	3.1	49
74	Plasma cholesteryl ester transfer protein is predominantly derived from Kupffer cells. Hepatology, 2015, 62, 1710-1722.	7.3	60
75	Resting-State Functional Connectivity in Patients with Long-Term Remission of Cushing's Disease. Neuropsychopharmacology, 2015, 40, 1888-1898.	5.4	44
76	Extending pharmacological dose-response curves for salsalate with natural deep eutectic solvents. RSC Advances, 2015, 5, 61398-61401.	3.6	20
77	Cold Exposure Partially Corrects Disturbances in Lipid Metabolism in a Male Mouse Model of Glucocorticoid Excess. Endocrinology, 2015, 156, 4115-4128.	2.8	41
78	A Mixed Glucocorticoid/Mineralocorticoid Selective Modulator With Dominant Antagonism in the Male Rat Brain. Endocrinology, 2015, 156, 4105-4114.	2.8	48
79	Spatial and temporal expression of immunoglobulin superfamily member 1 in the rat. Journal of Endocrinology, 2015, 226, 181-191.	2.6	28
80	Altered neural processing of emotional faces in remitted Cushing's disease. Psychoneuroendocrinology, 2015, 59, 134-146.	2.7	40
81	Stress hormone corticosterone enhances susceptibility to cortical spreading depression in familial hemiplegic migraine type 1 mutant mice. Experimental Neurology, 2015, 263, 214-220.	4.1	27
82	Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity. FASEB Journal, 2014, 28, 5361-5375.	0.5	85
83	Preventing Formation of Toxic N-Terminal Huntingtin Fragments Through Antisense Oligonucleotide-Mediated Protein Modification. Nucleic Acid Therapeutics, 2014, 24, 4-12.	3.6	47
84	Widespread reductions of white matter integrity in patients with long-term remission of Cushing's disease. NeuroImage: Clinical, 2014, 4, 659-667.	2.7	76
85	Cofactor Profiling of the Glucocorticoid Receptor from a Cellular Environment. Methods in Molecular Biology, 2014, 1204, 83-94.	0.9	20
86	Abstract 400: Cannabinoid 1 Receptor Blockade Diminishes Obesity and Dyslipidemia via Peripheral Activation of Brown Adipose Tissue. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
87	Antisense-mediated isoform switching of steroid receptor coactivator-1 in the central nucleus of the amygdala of the mouse brain. BMC Neuroscience, 2013, 14, 5.	1.9	12
88	Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Molecular Psychiatry, 2013, 18, 993-1005.	7.9	129
89	Understanding stress-effects in the brain via transcriptional signal transduction pathways. Neuroscience, 2013, 242, 97-109.	2.3	37
90	Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: Removal of the CAG containing exon. Neurobiology of Disease, 2013, 58, 49-56.	4.4	66

#	Article	IF	CITATIONS
91	Smaller grey matter volumes in the anterior cingulate cortex and greater cerebellar volumes in patients with long-term remission of Cushing's disease: a case–control study. European Journal of Endocrinology, 2013, 169, 811-819.	3.7	84
92	Differential targeting of brain stress circuits with a selective glucocorticoid receptor modulator. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7910-7915.	7.1	105
93	Glucocorticoid excess induces long-lasting changes in body composition in male C57Bl/6J mice only with high-fat diet. Physiological Reports, 2013, 1, e00103.	1.7	12
94	Both Transient and Continuous Corticosterone Excess Inhibit Atherosclerotic Plaque Formation in APOE*3-Leiden.CETP Mice. PLoS ONE, 2013, 8, e63882.	2.5	14
95	Epigenetic regulation of the <i>glucocorticoid receptor</i> promoter 1 ₇ in adult rats. Epigenetics, 2012, 7, 1290-1301.	2.7	79
96	Antisense-Mediated RNA Targeting: Versatile and Expedient Genetic Manipulation in the Brain. Frontiers in Molecular Neuroscience, 2011, 4, 10.	2.9	19
97	Blocking Dopamine D2 Receptors by Haloperidol Curtails the Beneficial Impact of Calorie Restriction on the Metabolic Phenotype of High-Fat Diet Induced Obese Mice. Journal of Neuroendocrinology, 2011, 23, 158-167.	2.6	14
98	Long Term Sex-Dependent Psychoneuroendocrine Effects of Maternal Deprivation and Juvenile Unpredictable Stress in Rats. Journal of Neuroendocrinology, 2011, 23, 329-344.	2.6	84
99	Early life stress paradigms in rodents: potential animal models of depression?. Psychopharmacology, 2011, 214, 131-140.	3.1	153
100	Specific Regulatory Motifs Predict Glucocorticoid Responsiveness of Hippocampal Gene Expression. Endocrinology, 2011, 152, 3749-3757.	2.8	66
101	Corticosteroid receptor signalling modes and stress adaptation in the brain. Hormone Molecular Biology and Clinical Investigation, 2011, 7, 317-26.	0.7	Ο
102	Specificity of glucocorticoid receptor primary antibodies for analysis of receptor localization patterns in cultured cells and rat hippocampus. Brain Research, 2010, 1331, 1-11.	2.2	34
103	Recovery from Disrupted Ultradian Glucocorticoid Rhythmicity Reveals a Dissociation Between Hormonal and Behavioural Stress Responsiveness. Journal of Neuroendocrinology, 2010, 22, 862-871.	2.6	32
104	Glucocorticoid Ultradian Rhythmicity Directs Cyclical Gene Pulsing of the Clock Gene Period 1 in Rat Hippocampus. Journal of Neuroendocrinology, 2010, 22, 1093-1100.	2.6	119
105	Paired Hormone Response Elements Predict Caveolin-1 as a Glucocorticoid Target Gene. PLoS ONE, 2010, 5, e8839.	2.5	9
106	Stress Responsiveness Varies over the Ultradian Glucocorticoid Cycle in a Brain-Region-Specific Manner. Endocrinology, 2010, 151, 5369-5379.	2.8	94
107	Disrupted Corticosterone Pulsatile Patterns Attenuate Responsiveness to Glucocorticoid Signaling in Rat Brain. Endocrinology, 2010, 151, 1177-1186.	2.8	86
108	Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed. Psychoneuroendocrinology, 2010, 35, 544-556.	2.7	179

#	Article	IF	CITATIONS
109	Timing Is Critical for Effective Glucocorticoid Receptor Mediated Repression of the cAMP-Induced CRH Gene. PLoS ONE, 2009, 4, e4327.	2.5	15
110	MicroRNA 18 and 124a Down-Regulate the Glucocorticoid Receptor: Implications for Glucocorticoid Responsiveness in the Brain. Endocrinology, 2009, 150, 2220-2228.	2.8	234
111	Dissociation between Rat Hippocampal CA1 and Dentate Gyrus Cells in Their Response to Corticosterone: Effects on Calcium Channel Protein and Current. Endocrinology, 2009, 150, 4615-4624.	2.8	30
112	Steroid receptor coactivator-1 is necessary for regulation of corticotropin-releasing hormone by chronic stress and glucocorticoids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8038-8042.	7.1	84
113	Subregion-specific differences in translocation patterns of mineralocorticoid and glucocorticoid receptors in rat hippocampus. Brain Research, 2009, 1249, 43-53.	2.2	54
114	Glucocorticoid signaling and stress-related limbic susceptibility pathway: About receptors, transcription machinery and microRNA. Brain Research, 2009, 1293, 129-141.	2.2	112
115	From the Stalk to Down Under about Brain Glucocorticoid Receptors, Stress and Development. Neurochemical Research, 2008, 33, 637-642.	3.3	15
116	Chromatin immunoprecipitation scanning identifies glucocorticoid receptor binding regions in the proximal promoter of a ubiquitously expressed glucocorticoid target gene in brain. Journal of Neurochemistry, 2008, 106, 2515-2523.	3.9	44
117	Central corticosteroid actions: Search for gene targets. European Journal of Pharmacology, 2008, 583, 272-289.	3.5	132
118	Selective transrepression versus transactivation mechanisms by glucocorticoid receptor modulators in stress and immune systems. European Journal of Pharmacology, 2008, 583, 290-302.	3.5	82
119	Pharmacology of glucocorticoids: Beyond receptors. European Journal of Pharmacology, 2008, 585, 483-491.	3.5	72
120	Differential Susceptibility to Extinction-Induced Despair and Age-Dependent Alterations in the Hypothalamic-Pituitary-Adrenal Axis and Neurochemical Parameters. Neuropsychobiology, 2008, 58, 138-153.	1.9	14
121	Human apolipoprotein C-I expression in mice impairs learning and memory functions. Journal of Lipid Research, 2008, 49, 856-869.	4.2	34
122	Discovery of a Functional Glucocorticoid Receptor β-Isoform in Zebrafish. Endocrinology, 2008, 149, 1591-1599.	2.8	144
123	Nuclear Receptor Coregulators Differentially Modulate Induction and Glucocorticoid Receptor-Mediated Repression of the Corticotropin-Releasing Hormone Gene. Endocrinology, 2008, 149, 725-732.	2.8	68
124	Differential Effects of Corticosterone on the Slow Afterhyperpolarization in the Basolateral Amygdala and CA1 Region: Possible Role of Calcium Channel Subunits. Journal of Neurophysiology, 2008, 99, 958-968.	1.8	50
125	Coregulators in CNS Function and Disease. , 2008, , 383-407.		1
126	Therapy Insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression?. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 168-179.	2.8	170

#	Article	IF	CITATIONS
127	Glucocorticoid-Enhanced Expression of Dioxin Target Genes through Regulation of the Rat Aryl Hydrocarbon Receptor. Toxicological Sciences, 2007, 99, 455-469.	3.1	44
128	Ontogeny of steroid receptor coactivators in the hippocampus and their role in regulating postnatal HPA axis function. Brain Research, 2007, 1174, 1-6.	2.2	14
129	Pin1 levels are downregulated during ER stress in human neuroblastoma cells. Neurogenetics, 2007, 8, 21-27.	1.4	3
130	Corticosteroid Receptors. , 2007, , 594-605.		0
131	Effect of brief corticosterone administration on SGK1 and RGS4 mRNA expression in rat hippocampus. Stress, 2006, 9, 165-170.	1.8	26
132	A Common Polymorphism in the Mineralocorticoid Receptor Modulates Stress Responsiveness. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 5083-5089.	3.6	188
133	Steroid receptor coregulator diversity: What can it mean for the stressed brain?. Neuroscience, 2006, 138, 891-899.	2.3	41
134	Attenuating corticosterone levels on the day of memory assessment prevents chronic stressâ€induced impairments in spatial memory. European Journal of Neuroscience, 2006, 24, 595-605.	2.6	113
135	The dynamic pattern of glucocorticoid receptor-mediated transcriptional responses in neuronal PC12 cells. Journal of Neurochemistry, 2006, 99, 1282-1298.	3.9	46
136	No effect of prolonged corticosterone over-exposure on NCAM, SGK1, and RGS4 mRNA expression in rat hippocampus. Brain Research, 2006, 1093, 161-166.	2.2	7
137	Understanding stress through the genome. Stress, 2006, 9, 61-67.	1.8	29
138	Neuroanatomical distribution and colocalisation of nuclear receptor corepressor (N-CoR) and silencing mediator of retinoid and thyroid receptors (SMRT) in rat brain. Brain Research, 2005, 1059, 113-121.	2.2	24
139	Low Doses of Dexamethasone Can Produce a Hypocorticosteroid State in the Brain. Endocrinology, 2005, 146, 5587-5595.	2.8	91
140	Corticosteroid receptors and HPA-axis regulation. Handbook of Behavioral Neuroscience, 2005, , 265-294.	0.0	7
141	Steroid Receptor Coactivator-1 Splice Variants Differentially Affect Corticosteroid Receptor Signaling. Endocrinology, 2005, 146, 1438-1448.	2.8	97
142	Correlations between Hypothalamus-Pituitary-Adrenal Axis Parameters Depend on Age and Learning Capacity. Endocrinology, 2005, 146, 1372-1381.	2.8	41
143	Age-Related Changes in Hypothalamic-Pituitary-Adrenal Axis Activity of Male C57BL/6J Mice. Neuroendocrinology, 2005, 81, 372-380.	2.5	66
144	Corticosteroids and the blood–brain barrier. Handbook of Behavioral Neuroscience, 2005, , 329-340.	0.0	5

#	Article	IF	CITATIONS
145	Expression profiling in laser-microdissected hippocampal subregions in rat brain reveals large subregion-specific differences in expression. European Journal of Neuroscience, 2004, 20, 2541-2554.	2.6	65
146	Localization of mRNA Expression of P-Glycoprotein at the Blood-Brain Barrier and in the Hippocampus. Annals of the New York Academy of Sciences, 2004, 1032, 308-311.	3.8	27
147	Effect of early life stress on serotonin responses in the hippocampus of young adult rats. Synapse, 2004, 53, 11-19.	1.2	44
148	Genetic Selection For Coping Style Predicts Stressor Susceptibility. Journal of Neuroendocrinology, 2003, 15, 256-267.	2.6	176
149	Differences in basal and stress-induced HPA regulation of wild house mice selected for high and low aggression. Hormones and Behavior, 2003, 43, 197-204.	2.1	224
150	Chronic unpredictable stress causes attenuation of serotonin responses in cornu ammonis 1 pyramidal neurons. Neuroscience, 2003, 120, 649-658.	2.3	56
151	Cell- and tIssue-specific effects of corticosteroids in relation to glucocorticoid resistance: examples from the brain. Journal of Endocrinology, 2003, 178, 13-18.	2.6	35
152	Homodimerization of the Glucocorticoid Receptor Is Not Essential for Response Element Binding: Activation of the PhenylethanolamineN-Methyltransferase Gene by Dimerization-Defective Mutants. Molecular Endocrinology, 2003, 17, 2583-2592.	3.7	101
153	The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. Journal of Endocrinology, 2002, 175, 251-260.	2.6	104
154	Hippocampal Serotonin Responses in Short and Long Attack Latency Mice. Journal of Neuroendocrinology, 2002, 14, 234-239.	2.6	38
155	Coregulator Proteins and Corticosteroid Action in the Brain. Journal of Neuroendocrinology, 2002, 14, 499-505.	2.6	56
156	Transcriptional Repression of the 5-HT1A Receptor Promoter by Corticosterone Via Mineralocorticoid Receptors Depends on the Cellular Context. Journal of Neuroendocrinology, 2001, 12, 245-254.	2.6	69
157	Multidrug Resistance P-Glycoprotein Hampers the Access of Cortisol But Not of Corticosterone to Mouse and Human Brain. Endocrinology, 2001, 142, 2686-2694.	2.8	57
158	Role of SGK in mineralocorticoid-regulated sodium transport. Kidney International, 2000, 57, 1283-1289.	5.2	49
159	Brain mineralocorticoid receptors and centrally regulated functions. Kidney International, 2000, 57, 1329-1336.	5.2	180
160	Effects of flesinoxan on corticosteroid receptor expression in the rat hippocampus. European Journal of Pharmacology, 2000, 404, 111-119.	3.5	6
161	Plasma Membrane Calcium Pump Isoform 1 Gene Expression Is Repressed by Corticosterone and Stress in Rat Hippocampus. Journal of Neuroscience, 2000, 20, 3129-3138.	3.6	50
162	A Cholecystokinin-Mediated Pathway to the Paraventricular Thalamus Is Recruited in Chronically Stressed Rats and Regulates Hypothalamic-Pituitary-Adrenal Function. Journal of Neuroscience, 2000, 20, 5564-5573.	3.6	138

#	Article	IF	CITATIONS
163	Regulation of the Rat Serotonin-1A Receptor Gene by Corticosteroids. Journal of Biological Chemistry, 2000, 275, 1321-1326.	3.4	76
164	Differential Expression and Regional Distribution of Steroid Receptor Coactivators SRC-1 and SRC-2 in Brain and Pituitary. Endocrinology, 2000, 141, 2192-2199.	2.8	67
165	Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2514-2519.	7.1	688
166	Flesinoxan treatment reduces 5-HT1A receptor mRNA in the dentate gyrus independently of high plasma corticosterone levels. European Journal of Pharmacology, 1998, 353, 207-214.	3.5	15
167	Acute rise in corticosterone facilitates 5-HT1A receptor-mediated behavioural responses. European Journal of Pharmacology, 1998, 351, 7-14.	3.5	27
168	Corticosterone and Serotonergic Neurotransmission in the Hippocampus: Functional Implications of Central Corticosteroid Receptor Diversity. Critical Reviews in Neurobiology, 1998, 12, 1-20.	3.1	185
169	Regulation of hippocampal 5-HT1A receptor mRNA and binding in transgenic mice with a targeted disruption of the glucocorticoid receptor. Molecular Brain Research, 1997, 46, 290-296.	2.3	45
170	Elevated basal trough levels of corticosterone suppress hippocampal 5-hydroxytryptamine1A receptor expression in adrenally intact rats: implication for the pathogenesis of depression. Neuroscience, 1997, 80, 419-426.	2.3	60
171	Hippocampal Cell Responses in Mice with a Targeted Glucocorticoid Receptor Gene Disruption. Journal of Neuroscience, 1996, 16, 6766-6774.	3.6	49
172	Molecular dissection of corticosteroid action in the rat hippocampus. Journal of Molecular Neuroscience, 1996, 7, 135-146.	2.3	14
173	Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Research, 1996, 736, 338-343.	2.2	126
174	Enhanced 5-HT1A receptor expression in forebrain regions of aggressive house mice. Brain Research, 1996, 736, 338-343.	2.2	4
175	A Role for the Mineralocorticoid Receptor in a Rapid and Transient Suppression of Hippocampal 5-HT1AReceptor mRNA by Corticosterone. Journal of Neuroendocrinology, 1995, 7, 653-657.	2.6	61
176	Socially defeated male rats display a blunted adrenocortical response to a low dose of 8-OH-DPAT. European Journal of Pharmacology, 1995, 272, 45-50.	3.5	37
177	Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. European Journal of Pharmacology, 1994, 266, 255-261.	2.6	157
178	Brain mineralocorticoid receptor diversity: Functional implications. Journal of Steroid Biochemistry and Molecular Biology, 1993, 47, 183-190.	2.5	57
179	The structure of neuropeptide receptors. European Journal of Pharmacology, 1992, 227, 1-18.	2.6	39

180 MR/GR Signaling in the Brain during the Stress Response. , 0, , .

11