Antonella Vitti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6412448/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trichoderma-Induced Resistance to Botrytis cinerea in Solanum Species: A Meta-Analysis. Plants, 2022, 11, 180.	1.6	12
2	Root Morphology, Allometric Relations and Rhizosheath of Ancient and Modern Tetraploid Wheats (Triticum durum Desf.) in Response to Inoculation with Trichoderma harzianum T-22. Plants, 2022, 11, 159.	1.6	10
3	Seed Coating with Trichoderma harzianum T-22 of Italian Durum Wheat Increases Protection against Fusarium culmorum-Induced Crown Rot. Agriculture (Switzerland), 2022, 12, 714.	1.4	5
4	Agronomic Comparisons of Heirloom and Modern Processing Tomato Genotypes Cultivated in Organic and Conventional Farming Systems. Agronomy, 2021, 11, 349.	1.3	4
5	Physico-Chemical Characterization and Biological Activities of a Digestate and a More Stabilized Digestate-Derived Compost from Agro-Waste. Plants, 2021, 10, 386.	1.6	17
6	Root Zone Management for Improving Seedling Quality of Organically Produced Horticultural Crops. Agronomy, 2021, 11, 630.	1.3	8
7	Essential oils and quality composts sourced by recycling vegetable residues from the aromatic plant supply chain. Industrial Crops and Products, 2021, 162, 113255.	2.5	26
8	Response of Two Local Common Bean Ecotypes of "Fagioli di Sarconi―PCI (Phaseolus vulgaris L.) to Seed-Borne Pathogens and Environmental Change. Agronomy, 2021, 11, 1924.	1.3	2
9	Suitability of On-Farm Green Compost for the Production of Baby Leaf Species. Horticulturae, 2021, 7, 512.	1.2	6
10	Influence of Cultivation Areas on the Seed-Borne Pathogens on Two Local Common Bean Ecotypes of "Fagioli di Sarconi―PGI (Phaseolus vulgaris L.). Biology and Life Sciences Forum, 2020, 4, .	0.6	1
11	Opportunities of spontaneous edible plants collected in southern Italy (Campania Region) as functional food. Italian Journal of Agronomy, 2019, 14, 248-258.	0.4	4
12	Physiological and biochemical response of tomato plants treated with Trichoderma harzianum T-22 and infected by Cucumber mosaic virus. Acta Horticulturae, 2018, , 77-82.	0.1	0
13	Plant architecture, auxin homeostasis and phenol content in Arabidopsis thaliana grown in cadmium- and zinc-enriched media. Journal of Plant Physiology, 2017, 216, 174-180.	1.6	45
14	Preliminary investigations on bioactive molecules concentration in â€~Aglianico' grape berries. Acta Horticulturae, 2017, , 299-306.	0.1	2
15	Trichoderma harzianum T-22 Induces Systemic Resistance in Tomato Infected by Cucumber mosaic virus. Frontiers in Plant Science, 2016, 7, 1520.	1.7	81
16	Ascorbate Peroxidase and Catalase Activities and Their Genetic Regulation in Plants Subjected to Drought and Salinity Stresses. International Journal of Molecular Sciences, 2015, 16, 13561-13578.	1.8	492
17	Beneficial effects of Trichoderma harzianum T-22 in tomato seedlings infected by Cucumber mosaic virus (CMV). BioControl, 2015, 60, 135-147.	0.9	73
18	Sustainable Agricultural Practices in Disease Defence of Traditional Crops in Southern Italy: The Case Study of Tomato Cherry Protected by Trichoderma harzianum T-22 Against Cucumber Mosaic Virus (CMV). , 2015, , 133-143.		2

ANTONELLA VITTI

#	Article	IF	CITATIONS
19	Hormonal Response and Root Architecture in Arabidopsis thaliana Subjected to Heavy Metals. International Journal of Plant Biology, 2014, 5, 5226.	1.1	14
20	Plant-Based Vaccines. Advances in Virus Research, 2014, 89, 1-37.	0.9	24
21	Control of Biotic and Abiotic Stresses in Cultivated Plants by the Use of Biostimulant Microorganisms. , 2014, , 107-117.		7
22	Simulated Digestion for Testing the Stability of Edible Vaccine Based on Cucumber mosaic virus (CMV) Chimeric Particle Display Hepatitis C virus (HCV) Peptide. Methods in Molecular Biology, 2014, 1108, 41-56.	0.4	2
23	Correlation between hormonal homeostasis and morphogenic responses in <i>Arabidopsis thaliana</i> seedlings growing in a Cd/Cu/Zn multiâ€pollution context. Physiologia Plantarum, 2013, 149, 487-498.	2.6	79
24	Auxin and Cytokinin Metabolism and Root Morphological Modifications in Arabidopsis thaliana Seedlings Infected with Cucumber mosaic virus (CMV) or Exposed to Cadmium. International Journal of Molecular Sciences, 2013, 14, 6889-6902.	1.8	80
25	Apoptotic Effects of a Chimeric Plant Virus Carrying a Mimotope of the Hepatitis C virus Hypervariable Region 1: Role of Caspases and Endoplasmic Reticulum-Stress. Journal of Clinical Immunology, 2012, 32, 866-876.	2.0	3
26	In vitro stability of Cucumber mosaic virus nanoparticles carrying a Hepatitis C virus-derived epitope under simulated gastrointestinal conditions and in vivo efficacy of an edible vaccine. Journal of Virological Methods, 2010, 165, 211-215.	1.0	25
27	Cucumber mosaic virus as the expression system for a potential vaccine against Alzheimer's disease. Journal of Virological Methods, 2010, 169, 332-340.	1.0	20
28	Structural and biological properties of Cucumber mosaic virus particles carrying hepatitis C virus-derived epitopes. Journal of Virological Methods, 2009, 155, 118-121.	1.0	18
29	Cucumber mosaic virus as a presentation system for a double hepatitis C virus-derived epitope. Archives of Virology, 2007, 152, 915-928.	0.9	52