
Miguel Angel ChÃ;vez Fumagalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6412412/publications.pdf Version: 2024-02-01

MIGUEL ANGEL CHÃivez

#	Article	IF	CITATIONS
1	Sensitive and specific serodiagnosis of tegumentary leishmaniasis using a new chimeric protein based on specific B-cell epitopes of Leishmania antigenic proteins. Microbial Pathogenesis, 2022, 162, 105341.	2.9	3
2	Flau-A, a naphthoquinone derivative, is a promising therapeutic candidate against visceral leishmaniasis: A preliminary study. Experimental Parasitology, 2022, 233, 108205.	1.2	7
3	Recombinant guanosine-5′-triphosphate (GTP)-binding protein associated with Poloxamer 407-based polymeric micelles protects against Leishmania infantum infection. Cytokine, 2022, 153, 155865.	3.2	2
4	A recombinant Leishmania amastigote-specific protein, rLiHyG, with adjuvants, protects against infection with Leishmania infantum. Acta Tropica, 2022, 230, 106412.	2.0	6
5	<i>Leishmania</i> Â <scp>LiHyC</scp> protein is immunogenic and induces protection against visceral leishmaniasis. Parasite Immunology, 2022, 44, e12921.	1.5	3
6	Evaluation from a B-cell epitope-based chimeric protein for the serodiagnosis of tegumentary and visceral leishmaniasis. Microbial Pathogenesis, 2022, 167, 105562.	2.9	1
7	Leishmania eukaryotic elongation Factor-1 beta protein is immunogenic and induces parasitological protection in mice against Leishmania infantum infection. Microbial Pathogenesis, 2021, 151, 104745.	2.9	3
8	Diagnostic application of sensitive and specific phage-exposed epitopes for visceral leishmaniasis and human immunodeficiency virus coinfection. Parasitology, 2021, 148, 1706-1714.	1.5	3
9	Serodiagnosis of canine leishmaniasis using a novel recombinant chimeric protein constructed with distinct B-cell epitopes from antigenic Leishmania infantum proteins. Veterinary Parasitology, 2021, 296, 109513.	1.8	3
10	Potential of recombinant LiHyQ, a novel Leishmania infantum protein, for the diagnosis of canine visceral leishmaniasis and as a diagnostic and prognostic marker for human leishmaniasis and human immunodeficiency virus co-infection: A preliminary study. Acta Tropica, 2021, 224, 106126.	2.0	4
11	<i>In vitro</i> and <i>in vivo</i> antileishmanial activity of β-acetyl-digitoxin, a cardenolide of <i>Digitalis lanata</i> potentially useful to treat visceral leishmaniasis. Parasite, 2021, 28, 38.	2.0	6
12	A Leishmania infantum hypothetical protein evaluated as a recombinant protein and specific B-cell epitope for the serodiagnosis and prognosis of visceral leishmaniasis. Acta Tropica, 2020, 203, 105318.	2.0	9
13	Parasitological and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis. Parasite Immunology, 2020, 42, e12784.	1.5	7
14	Evaluation of the protective efficacy of a Leishmania protein associated with distinct adjuvants against visceral leishmaniasis and in vitro immunogenicity in human cells. Parasitology Research, 2020, 119, 2609-2622.	1.6	6
15	Biotechnological applications from a Leishmania amastigote-specific hypothetical protein in the canine and human visceral leishmaniasis. Microbial Pathogenesis, 2020, 147, 104283.	2.9	6
16	A new Leishmania hypothetical protein can be used for accurate serodiagnosis of canine and human visceral leishmaniasis and as a potential prognostic marker for human disease. Experimental Parasitology, 2020, 216, 107941.	1.2	5
17	Leishmania infantum amastin protein incorporated in distinct adjuvant systems induces protection against visceral leishmaniasis. Cytokine, 2020, 129, 155031.	3.2	10
18	Evaluation of Leishmania infantum pyridoxal kinase protein for the diagnosis of human and canine visceral leishmaniasis. Immunology Letters, 2020, 220, 11-20.	2.5	8

MIGUEL ANGEL CHÃivez

#	Article	IF	CITATIONS
19	A clioquinol-containing Pluronic [®] F127 polymeric micelle system is effective in the treatment of visceral leishmaniasis in a murine model. Parasite, 2020, 27, 29.	2.0	22
20	A chloroquinoline derivate presents effective in vitro and in vivo antileishmanial activity against Leishmania species that cause tegumentary and visceral leishmaniasis. Parasitology International, 2019, 73, 101966.	1.3	15
21	Recombinant Leishmania eukaryotic elongation factor-1 beta protein: A potential diagnostic antigen to detect tegumentary and visceral leishmaniasis in dogs and humans. Microbial Pathogenesis, 2019, 137, 103783.	2.9	11
22	Screening diagnostic candidates from <i>Leishmania infantum</i> proteins for human visceral leishmaniasis using an immunoproteomics approach. Parasitology, 2019, 146, 1467-1476.	1.5	17
23	A biomarker for tegumentary and visceral leishmaniasis based on a recombinant Leishmania hypothetical protein. Immunobiology, 2019, 224, 477-484.	1.9	12
24	Diagnostic evaluation of the amastin protein from Leishmania infantum in canine and human visceral leishmaniasis and immunogenicity in human cells derived from patients and healthy controls. Diagnostic Microbiology and Infectious Disease, 2019, 95, 134-143.	1.8	22
25	Evaluation of the in vitro and in vivo antileishmanial activity of a chloroquinolin derivative against Leishmania species capable of causing tegumentary and visceral leishmaniasis. Experimental Parasitology, 2019, 199, 30-37.	1.2	13
26	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	15
27	High-through identification of T cell-specific phage-exposed mimotopes using PBMCs from tegumentary leishmaniasis patients and their use as vaccine candidates against Leishmania amazonensis infection. Parasitology, 2019, 146, 322-332.	1.5	13
28	In vitro and in vivo antileishmanial activity of a fluoroquinoline derivate against Leishmania infantum and Leishmania amazonensis species. Acta Tropica, 2019, 191, 29-37.	2.0	12
29	Immunogenicity and protective efficacy of a new Leishmania hypothetical protein applied as a DNA vaccine or in a recombinant form against Leishmania infantum infection. Molecular Immunology, 2019, 106, 108-118.	2.2	20
30	In silico Leishmania proteome mining applied to identify drug target potential to be used to treat against visceral and tegumentary leishmaniasis. Journal of Molecular Graphics and Modelling, 2019, 87, 89-97.	2.4	16
31	A Pluronic® F127-based polymeric micelle system containing an antileishmanial molecule is immunotherapeutic and effective in the treatment against Leishmania amazonensis infection. Parasitology International, 2019, 68, 63-72.	1.3	26
32	In vivo antileishmanial efficacy of a naphthoquinone derivate incorporated into a Pluronic® F127-based polymeric micelle system against Leishmania amazonensis infection. Biomedicine and Pharmacotherapy, 2019, 109, 779-787.	5.6	27
33	Potential application of small myristoylated protein-3 evaluated as recombinant antigen and a synthetic peptide containing its linear B-cell epitope for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Immunobiology, 2019, 224, 163-171.	1.9	15
34	Antileishmanial Activity, Cytotoxicity and Mechanism of Action of Clioquinol Against <i>Leishmania infantum</i> and <i>Leishmania amazonensis</i> Species. Basic and Clinical Pharmacology and Toxicology, 2018, 123, 236-246.	2.5	35
35	Serological diagnosis and prognostic of tegumentary and visceral leishmaniasis using a conserved Leishmania hypothetical protein. Parasitology International, 2018, 67, 344-350.	1.3	22
36	Antileishmanial activity of a naphthoquinone derivate against promastigote and amastigote stages of Leishmania infantum and Leishmania amazonensis and its mechanism of action against L. amazonensis species. Parasitology Research, 2018, 117, 391-403.	1.6	26

Miguel Angel ChÃivez

#	Article	IF	CITATIONS
37	Identification of immune biomarkers related to disease progression and treatment efficacy in human visceral leishmaniasis. Immunobiology, 2018, 223, 303-309.	1.9	29
38	Antigenicity, immunogenicity and protective efficacy of a conserved Leishmania hypothetical protein against visceral leishmaniasis. Parasitology, 2018, 145, 740-751.	1.5	11
39	Recombinant prohibitin protein of Leishmania infantum acts as a vaccine candidate and diagnostic marker against visceral leishmaniasis. Cellular Immunology, 2018, 323, 59-69.	3.0	33
40	Diagnostic application of recombinant Leishmania proteins and evaluation of their in vitro immunogenicity after stimulation of immune cells collected from tegumentary leishmaniasis patients and healthy individuals. Cellular Immunology, 2018, 334, 61-69.	3.0	12
41	Vaccination with a CD4+ and CD8+ T-cell epitopes-based recombinant chimeric protein derived from Leishmania infantum proteins confers protective immunity against visceral leishmaniasis. Translational Research, 2018, 200, 18-34.	5.0	29
42	Evaluation of a Leishmania hypothetical protein administered as DNA vaccine or recombinant protein against Leishmania infantum infection and its immunogenicity in humans. Cellular Immunology, 2018, 331, 67-77.	3.0	9
43	A Computational Approach Using Bioinformatics to Screening Drug Targets for <i> Leishmania infantum</i> Species. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-9.	1.2	13
44	Small Myristoylated Protein-3, Identified as a Potential Virulence Factor in Leishmania amazonensis, Proves to be a Protective Antigen against Visceral Leishmaniasis. International Journal of Molecular Sciences, 2018, 19, 129.	4.1	15
45	A Leishmania hypothetical protein-containing liposome-based formulation is highly immunogenic and induces protection against visceral leishmaniasis. Cytokine, 2018, 111, 131-139.	3.2	18
46	A conserved Leishmania hypothetical protein evaluated for the serodiagnosis of canine and human visceral and tegumentary leishmaniasis, as well as a serological marker for the posttreatment patient follow-up. Diagnostic Microbiology and Infectious Disease, 2018, 92, 196-203.	1.8	13
47	Evaluation of a hypothetical protein for serodiagnosis and as a potential marker for post-treatment serological evaluation of tegumentary leishmaniasis patients. Parasitology Research, 2017, 116, 1197-1206.	1.6	17
48	Antigenicity of phage clones and their synthetic peptides for the serodiagnosis of canine and human visceral leishmaniasis. Microbial Pathogenesis, 2017, 110, 14-22.	2.9	24
49	An ELISA immunoassay employing a conserved Leishmania hypothetical protein for the serodiagnosis of visceral and tegumentary leishmaniasis in dogs and humans. Cellular Immunology, 2017, 318, 42-48.	3.0	20
50	An in silico functional annotation and screening of potential drug targets derived from Leishmania spp. hypothetical proteins identified by immunoproteomics. Experimental Parasitology, 2017, 176, 66-74.	1.2	15
51	Performance of Leishmania braziliensis enolase protein for the serodiagnosis of canine and human visceral leishmaniosis. Veterinary Parasitology, 2017, 238, 77-81.	1.8	9
52	Probing the efficacy of a heterologous Leishmania/L. Viannia braziliensis recombinant enolase as a candidate vaccine to restrict the development of L. infantum in BALB/c mice. Acta Tropica, 2017, 171, 8-16.	2.0	14
53	Recombinant small glutamine-rich tetratricopeptide repeat-containing protein of Leishmania infantum: Potential vaccine and diagnostic application against visceral leishmaniasis. Molecular Immunology, 2017, 91, 272-281.	2.2	13
54	Leishmania infantum mimotopes and a phage–ELISA assay as tools for a sensitive and specific serodiagnosis of human visceral leishmaniasis. Diagnostic Microbiology and Infectious Disease, 2017, 87, 219-225.	1.8	25

Miguel Angel ChÃivez

#	Article	IF	CITATIONS
55	Selection strategy of phage-displayed immunogens based on an in vitro evaluation of the Th1 response of PBMCs and their potential use as a vaccine against Leishmania infantum infection. Parasites and Vectors, 2017, 10, 617.	2.5	15
56	Recent updates and perspectives on approaches for the development of vaccines against visceral leishmaniasis. Revista Da Sociedade Brasileira De Medicina Tropical, 2016, 49, 398-407.	0.9	49
57	Antileishmanial activity and mechanism of action from a purified fraction of Zingiber officinalis Roscoe against Leishmania amazonensis. Experimental Parasitology, 2016, 166, 21-28.	1.2	31
58	New serological tools for improved diagnosis of human tegumentary leishmaniasis. Journal of Immunological Methods, 2016, 434, 39-45.	1.4	19
59	Poloxamer 407 (Pluronic® F127)-based polymeric micelles for amphotericin B: InÂvitro biological activity, toxicity and inÂvivo therapeutic efficacy against murine tegumentary leishmaniasis. Experimental Parasitology, 2016, 169, 34-42.	1.2	41
60	Crossâ€protective efficacy from a immunogen firstly identified in <i><scp>L</scp>eishmania infantum</i> against tegumentary leishmaniasis. Parasite Immunology, 2016, 38, 108-117.	1.5	3
61	A new Leishmania-specific hypothetical protein and its non-described specific B cell conformational epitope applied in the serodiagnosis of canine visceral leishmaniasis. Parasitology Research, 2016, 115, 1649-1658.	1.6	27
62	Evaluation of two recombinant Leishmania proteins identified by an immunoproteomic approach as tools for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Veterinary Parasitology, 2016, 215, 63-71.	1.8	25
63	Cross-protective efficacy of Leishmania infantum LiHyD protein against t egumentary leishmaniasis caused by Leishmania major and Leishmania braziliensis species. Acta Tropica, 2016, 158, 220-230.	2.0	14
64	A new Leishmania-specific hypothetical protein, LiHyT, used as a vaccine antigen against visceral leishmaniasis. Acta Tropica, 2016, 154, 73-81.	2.0	21
65	Phage-fused epitopes from <i>Leishmania infantum</i> used as immunogenic vaccines confer partial protection against <i>Leishmania amazonensis</i> infection. Parasitology, 2015, 142, 1335-1347.	1.5	22
66	Prophylactic properties of a <i>Leishmania</i> â€specific hypothetical protein in a murine model of visceral leishmaniasis. Parasite Immunology, 2015, 37, 646-656.	1.5	33
67	Theranostic applications of phage display to control leishmaniasis: selection of biomarkers for serodiagnostics, vaccination, and immunotherapy. Revista Da Sociedade Brasileira De Medicina Tropical, 2015, 48, 370-379.	0.9	21
68	Antigenicity, Immunogenicity and Protective Efficacy of Three Proteins Expressed in the Promastigote and Amastigote Stages of Leishmania infantum against Visceral Leishmaniasis. PLoS ONE, 2015, 10, e0137683.	2.5	19
69	New delivery systems for amphotericin B applied to the improvement of leishmaniasis treatment. Revista Da Sociedade Brasileira De Medicina Tropical, 2015, 48, 235-242.	0.9	71
70	Evaluation of adjuvant activity of fractions derived from Agaricus blazei, when in association with the recombinant LiHyp1 protein, to protect against visceral leishmaniasis. Experimental Parasitology, 2015, 153, 180-190.	1.2	21
71	Antileishmanial activity of standardized fractions of Stryphnodendron obovatum (Barbatimão) extract and constituent compounds. Journal of Ethnopharmacology, 2015, 165, 238-242.	4.1	26
72	Proteins Selected in Leishmania (Viannia) braziliensis by an Immunoproteomic Approach with Potential Serodiagnosis Applications for Tegumentary Leishmaniasis. Vaccine Journal, 2015, 22, 1187-1196.	3.1	54

MIGUEL ANGEL CHÃivez

#	Article	IF	CITATIONS
73	A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the serodiagnosis of, and as a vaccine candidate against, visceral leishmaniasis. Parasites and Vectors, 2015, 8, 363.	2.5	34
74	Antileishmanial activity and evaluation of the mechanism of action of strychnobiflavone flavonoid isolated from Strychnos pseudoquina against Leishmania infantum. Parasitology Research, 2015, 114, 4625-4635.	1.6	36
75	Mimotope-Based Vaccines of Leishmania infantum Antigens and Their Protective Efficacy against Visceral Leishmaniasis. PLoS ONE, 2014, 9, e110014.	2.5	36
76	Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. International Journal of Nanomedicine, 2014, 9, 877.	6.7	43
77	An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. International Journal of Nanomedicine, 2014, 9, 5341.	6.7	39
78	Identification of Differentially Expressed Proteins from Leishmania amazonensis Associated with the Loss of Virulence of the Parasites. PLoS Neglected Tropical Diseases, 2014, 8, e2764.	3.0	52
79	Subtractive Phage Display Selection from Canine Visceral Leishmaniasis Identifies Novel Epitopes That Mimic Leishmania infantum Antigens with Potential Serodiagnosis Applications. Vaccine Journal, 2014, 21, 96-106.	3.1	24
80	Cross-protective effect of a combined L5 plus L3 Leishmania major ribosomal protein based vaccine combined with a Th1 adjuvant in murine cutaneous and visceral leishmaniasis. Parasites and Vectors, 2014, 7, 3.	2.5	31
81	Antileishmanial activity and cytotoxicity of Brazilian plants. Experimental Parasitology, 2014, 143, 60-68.	1.2	52
82	Antigenicity and Protective Efficacy of a Leishmania Amastigote-specific Protein, Member of the Super-oxygenase Family, against Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2013, 7, e2148.	3.0	81
83	<i>Strychnos pseudoquina</i> and Its Purified Compounds Present an Effective <i>In Vitro</i> Antileishmanial Activity. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-9.	1.2	28
84	Sensitive and Specific Serodiagnosis of Leishmania infantum Infection in Dogs by Using Peptides Selected from Hypothetical Proteins Identified by an Immunoproteomic Approach. Vaccine Journal, 2013, 20, 835-841.	3.1	25
85	Identification of Proteins in Promastigote and Amastigote-like Leishmania Using an Immunoproteomic Approach. PLoS Neglected Tropical Diseases, 2012, 6, e1430.	3.0	95
86	Prophylactic or therapeutic administration of Agaricus blazei Murill is effective in treatment of murine visceral leishmaniasis. Experimental Parasitology, 2012, 132, 228-236.	1.2	23
87	Therapeutic efficacy induced by the oral administration of Agaricus blazei Murill against Leishmania amazonensis. Parasitology Research, 2012, 111, 1807-1816.	1.6	21
88	Evaluation of parasitological and immunological parameters of Leishmania chagasi infection in BALB/c mice using different doses and routes of inoculation of parasites. Parasitology Research, 2012, 110, 1277-1285.	1.6	54
89	Leishmanicidal activity of the Agaricus blazei Murill in different Leishmania species. Parasitology International, 2011, 60, 357-363.	1.3	70
90	Vaccination with the Leishmania infantum ribosomal proteins induces protection in BALB/c mice against Leishmania chagasi and Leishmania amazonensis challenge. Microbes and Infection, 2010, 12, 967-977.	1.9	39

#	Article	IF	CITATIONS
91	Specific Serodiagnosis of Canine Visceral Leishmaniasis Using <i>Leishmania</i> Species Ribosomal Protein Extracts. Vaccine Journal, 2009, 16, 1774-1780.	3.1	33