John T S Irvine

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6412345/john-t-s-irvine-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25,056 141 492 74 h-index g-index citations papers 27,980 7.4 519 7.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
492	High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode. <i>Applied Energy</i> , 2022 , 306, 118117	10.7	O
491	Iron-based electrode materials for solid oxide fuel cells and electrolysers. <i>Energy and Environmental Science</i> , 2021 , 14, 6287-6319	35.4	1
490	Achieving Strong Coherency for a Composite Electrode via One-Pot Method with Enhanced Electrochemical Performance in Reversible Solid Oxide Cells. <i>ACS Catalysis</i> , 2021 , 11, 3704-3714	13.1	9
489	Non-stoichiometry, structure and properties of proton-conducting perovskite oxides. <i>Solid State Ionics</i> , 2021 , 361, 115571	3.3	8
488	Platinum incorporation into titanate perovskites to deliver emergent active and stable platinum nanoparticles. <i>Nature Chemistry</i> , 2021 , 13, 677-682	17.6	16
487	Enhancing Electrochemical CO2 Reduction using Ce(Mn,Fe)O2 with La(Sr)Cr(Mn)O3 Cathode for High-Temperature Solid Oxide Electrolysis Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2100339	21.8	10
486	Time-resolved in-situ x-ray diffraction study of CaO and CaO:Ca3Al2O6 composite catalysts for biodiesel production. <i>JPhys Energy</i> , 2021 , 3, 034014	4.9	
485	2021 roadmap for sodium-ion batteries. <i>JPhys Energy</i> , 2021 , 3, 031503	4.9	24
484	Pd and GDC Co-infiltrated LSCM cathode for high-temperature CO2 electrolysis using solid oxide electrolysis cells. <i>Chemical Engineering Journal</i> , 2021 , 420, 127706	14.7	1
483	Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies. <i>Journal of Power Sources</i> , 2021 , 481, 229010	8.9	6
482	Carrier extraction from metallic perovskite oxide nanoparticles. <i>Nanoscale</i> , 2021 , 13, 12271-12278	7.7	
481	Durability of La0.20Sr0.25Ca0.45TiO3-based SOFC anodes: identifying sources of degradation in Ni and Pt/ceria co-impregnated fuel electrode microstructures. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10404-10418	13	1
480	Upscaling of Co-Impregnated La0.20Sr0.25Ca0.45TiO3 Anodes for Solid Oxide Fuel Cells: A Progress Report on a Decade of Academic-Industrial Collaboration. <i>Advanced Energy Materials</i> , 2021 , 11, 2003951	21.8	3
479	Roadmap on inorganic perovskites for energy applications. <i>JPhys Energy</i> , 2021 , 3, 031502	4.9	13
478	Use of Interplay between A-Site Non-Stoichiometry and Hydroxide Doping to Deliver Novel Proton-Conducting Perovskite Oxides. <i>Advanced Energy Materials</i> , 2021 , 11, 2101337	21.8	1
477	Development of the Ca/FeS2 Chemistry for Thermal Batteries. <i>Chemistry of Materials</i> , 2021 , 33, 7367-7	3386	1
476	Improved mechanical strength, proton conductivity and power density in an 'all-protonic' ceramic fuel cell at intermediate temperature. <i>Scientific Reports</i> , 2021 , 11, 19382	4.9	6

(2020-2020)

475	Atomic Layer Fluorination of 5 V Class Positive Electrode Material LiCoPO4 for Enhanced Electrochemical Performance. <i>Batteries and Supercaps</i> , 2020 , 3, 1051-1058	5.6	1	
474	Perovskites: Replacement of Ca by Ni in a Perovskite Titanate to Yield a Novel Perovskite Exsolution Architecture for Oxygen-Evolution Reactions (Adv. Energy Mater. 10/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070044	21.8	4	
473	High oxide ion and proton conductivity in a disordered hexagonal perovskite. <i>Nature Materials</i> , 2020 , 19, 752-757	27	52	
472	Evaluating sulfur-tolerance of metal/Ce0.80Gd0.20O1.90 co-impregnated La0.20Sr0.25Ca0.45TiO3 anodes for solid oxide fuel cells. <i>Solid State Ionics</i> , 2020 , 347, 115254	3.3	5	
471	Controlling the Energy-Level Alignment of Silicon Carbide Nanocrystals by Combining Surface Chemistry with Quantum Confinement. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1721-1728	6.4	7	
47°	Bandgap bowing in a zero-dimensional hybrid halide perovskite derivative: spin@rbit coupling versus lattice strain. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4416-4427	13	10	
469	Gasification of Glycerol Over Ni/EAl2O3 For Hydrogen Production: Tailoring Catalytic Properties to Control Deactivation. <i>Catalysis for Sustainable Energy</i> , 2020 , 7, 65-74	0.6	O	
468	2020 roadmap on solid-state batteries. <i>JPhys Energy</i> , 2020 , 2, 032008	4.9	31	
467	Insight into graphite oxidation in a NiO-based hybrid direct carbon fuel cell. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 10559-10568	6.7	1	
466	Synthesis and electrochemical characterization of La0.75Sr0.25Mn0.5Cr0.5\(\mathbb{N}\)AlxO3, for IT- and HT-SOFCs. International Journal of Applied Ceramic Technology, 2020 , 17, 1276-1285	2	O	
465	An FeNbO4-based oxide anode for a solid oxide fuel cell (SOFC). <i>Electrochimica Acta</i> , 2020 , 335, 135692	6.7	5	
464	All in onelphoto-reactor pod containing TiO2 coated glass beads and LEDs for continuous photocatalytic destruction of cyanotoxins in water. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 945-950	4.2	6	
463	Oxygen Redox Activity through a Reductive Coupling Mechanism in the P3-Type Nickel-Doped Sodium Manganese Oxide. <i>ACS Applied Energy Materials</i> , 2020 , 3, 184-191	6.1	26	
462	Vacancy-Enhanced Oxygen Redox Reversibility in P3-Type Magnesium-Doped Sodium Manganese Oxide Na0.67Mg0.2Mn0.8O2. <i>ACS Applied Energy Materials</i> , 2020 , 3, 10423-10434	6.1	8	
461	Photocatalytic removal of the cyanobacterium Microcystis aeruginosa PCC7813 and four microcystins by TiO coated porous glass beads with UV-LED irradiation. <i>Science of the Total Environment</i> , 2020 , 745, 141154	10.2	17	
460	Boosting CO2 electrolysis performance via calcium-oxide-looping combined with in situ exsolved NiBe nanoparticles in a symmetrical solid oxide electrolysis cell. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 14895-14899	13	14	
459	A New High-Performance Proton-Conducting Electrolyte for Next-Generation Solid Oxide Fuel Cells. <i>Energy Technology</i> , 2020 , 8, 2000486	3.5	6	
458	A Ce/Ru Codoped SrFeO3lPerovskite for a Coke-Resistant Anode of a Symmetrical Solid Oxide Fuel Cell. <i>ACS Catalysis</i> , 2020 , 10, 14398-14409	13.1	21	

457	Exsolution of Catalytically Active Iridium Nanoparticles from Strontium Titanate. <i>ACS Applied Materials & ACS Applied</i> Materials & Interfaces, 2020 , 12, 37444-37453	9.5	9
456	Reversible, all-perovskite SOFCs based on La, Sr gallates. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 29155-29165	6.7	2
455	Effect of halide-mixing on tolerance factor and charge-carrier dynamics in (CH 3 NH 3 PbBr 3⊠ Cl x) perovskites powders. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 19415-19428	2.1	1
454	Lithiation of V2O3(SO4)2 h flexible insertion host. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19502-195	123	1
453	Replacement of Ca by Ni in a Perovskite Titanate to Yield a Novel Perovskite Exsolution Architecture for Oxygen-Evolution Reactions. <i>Advanced Energy Materials</i> , 2020 , 10, 1903693	21.8	29
452	Enhanced CO2 Electrolysis at Redox Engineered Interfaces. <i>ECS Transactions</i> , 2019 , 91, 2565-2570	1	1
451	Recent Advances in Rh/CGO Co-Impregnated La0.20Sr0.25Ca0.45TiO3 Anodes for Solid Oxide Fuel Cells: Evaluation of Upscaling and Durability. <i>ECS Transactions</i> , 2019 , 91, 1741-1750	1	2
45°	Exsolution of FeNi alloy nanoparticles from (La,Sr)(Cr,Fe,Ni)O3 perovskites as potential oxygen transport membrane catalysts for methane reforming. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 15812-	1 ¹³ 822	33
449	Simultaneous CO2 removal from biomass conversion product gas and carbon nanotube formation via catalytic chemical vapour deposition. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 2604-2614	5.8	0
448	Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm and its primary applications in symmetric battery cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7766-7776	13	57
447	Electrical reduction of perovskite electrodes for accelerating exsolution of nanoparticles. <i>Electrochimica Acta</i> , 2019 , 306, 159-166	6.7	16
446	Boosting photocatalytic oxidation on graphitic carbon nitride for efficient photocatalysis by heterojunction with graphitic carbon units. <i>Chemical Engineering Journal</i> , 2019 , 370, 875-884	14.7	18
445	Preparation and Testing of Metal/Ce0.80Gd0.20O1.90 (Metal: Ni, Pd, Pt, Rh, Ru) Co-Impregnated La0.20Sr0.25Ca0.45TiO3 Anode Microstructures for Solid Oxide Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2019 , 166, F343-F349	3.9	8
444	Homogeneous Doping of Substitutional Nitrogen/Carbon in TiO2 Plates for Visible Light Photocatalytic Water Oxidation. <i>Advanced Functional Materials</i> , 2019 , 29, 1901943	15.6	44
443	Lattice strain-enhanced exsolution of nanoparticles in thin films. <i>Nature Communications</i> , 2019 , 10, 147	117.4	66
442	Enhanced carbon dioxide electrolysis at redox manipulated interfaces. <i>Nature Communications</i> , 2019 , 10, 1550	17.4	36
441	Investigation of solid base catalysts for biodiesel production from fish oil. <i>Renewable Energy</i> , 2019 , 139, 661-669	8.1	26
440	Oxygen storage capacity and thermal stability of brownmillerite-type Ca2(Al1-xGax)MnO5+Doxides. <i>Journal of Alloys and Compounds</i> , 2019 , 810, 151865	5.7	5

(2018-2019)

439	Evolution of Anodic Product from Molybdenum Metal in Absolute Ethanol and Humidity Sensing under Ambient Conditions. <i>Crystal Growth and Design</i> , 2019 , 19, 5249-5257	3.5	8	
438	In Situ Thermal Battery Discharge Using CoS2 as a Cathode Material. <i>Journal of the Electrochemical Society</i> , 2019 , 166, A2660-A2664	3.9	9	
437	Using cellulose polymorphs for enhanced hydrogen production from photocatalytic reforming. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 1971-1975	5.8	9	
436	Photo-catalytic hydrogen production over Au/g-CN: effect of gold particle dispersion and morphology. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 15974-15987	3.6	13	
435	Enhanced Cycling Performance of Magnesium-Doped Lithium Cobalt Phosphate. <i>ChemElectroChem</i> , 2019 , 6, 4885-4892	4.3	1	
434	Nanostructured Perovskite Solar Cells. <i>Nanomaterials</i> , 2019 , 9,	5.4	9	
433	Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 25503-25510	13	15	
432	Nanostructured carbons containing FeNi/NiFeO supported over N-doped carbon nanofibers for oxygen reduction and evolution reactions <i>RSC Advances</i> , 2019 , 9, 36586-36599	3.7	7	
431	A B-site doped perovskite ferrate as an efficient anode of a solid oxide fuel cell with in situ metal exsolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26944-26953	13	24	
430	Layered lithium niobium (III) oxidelliNbO2 as a visible-light-driven photocatalyst for H2 evolution. JPhys Energy, 2019 , 1, 015001	4.9	3	
429	Control of Spatially Homogeneous Distribution of Heteroatoms to Produce Red TiO Photocatalyst for Visible-Light Photocatalytic Water Splitting. <i>Chemistry - A European Journal</i> , 2019 , 25, 1787-1794	4.8	21	
428	Sulfur-Tolerant, Exsolved FeNi Alloy Nanoparticles for CO Oxidation. <i>Topics in Catalysis</i> , 2019 , 62, 1149-	121.5/6	21	
427	Mechanism of enhanced performance on a hybrid direct carbon fuel cell using sawdust biofuels. Journal of Power Sources, 2018 , 383, 10-16	8.9	17	
426	Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction. <i>Journal of Power Sources</i> , 2018 , 382, 135-143	8.9	31	
425	Microstructure dependence of performance degradation for intermediate temperature solid oxide fuel cells based on the metallic catalyst infiltrated La- and Ca-doped SrTiO3 anode support. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 5398-5406	13	10	
424	A novel in situ diffusion strategy to fabricate high performance cathodes for low temperature proton-conducting solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10411-10420	13	27	
423	Substitutional Carbon-Modified Anatase TiO Decahedral Plates Directly Derived from Titanium Oxalate Crystals via Topotactic Transition. <i>Advanced Materials</i> , 2018 , 30, e1705999	24	38	
422	Synthesis and applications of nanoporous perovskite metal oxides. <i>Chemical Science</i> , 2018 , 9, 3623-363	79.4	82	

421	Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applications. <i>Green Chemistry</i> , 2018 , 20, 2101-2109	10	30
420	Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets. <i>Science China Materials</i> , 2018 , 61, 831-838	7.1	11
419	Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 1101-1109	21.8	63
418	Electrochemical properties of composite cathodes using Sm doped layered perovskite for intermediate temperature-operating solid oxide fuel cell. <i>Applied Surface Science</i> , 2018 , 432, 272-277	6.7	4
417	Probing the structure-property-composition relationship in organic-inorganic tri-halide perovskites. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 20489-20496	3.6	2
416	Image analysis of the porous yttria-stabilized zirconia (YSZ) structure for a lanthanum ferrite-impregnated solid oxide fuel cell (SOFC) electrode. <i>Journal of the European Ceramic Society</i> , 2018 , 38, 5463-5470	6	8
415	Tailoring SOFC Electrode Microstructures for Improved Performance. <i>Advanced Energy Materials</i> , 2018 , 8, 1800120	21.8	92
414	Role of lattice distortion and A site cation in the phase transitions of methylammonium lead halide perovskites. <i>Physical Review Materials</i> , 2018 , 2,	3.2	16
413	Metal-oxide interactions for infiltrated Ni nanoparticles on A-site deficient LaxSr1 Bx/2TiO3. <i>Solid State Ionics</i> , 2018 , 315, 126-130	3.3	7
412	Scaling up aqueous processing of A-site deficient strontium titanate for SOFC anode supports. Journal of the European Ceramic Society, 2018, 38, 1663-1672	6	3
411	Transition Metal Chlorides NiCl2, KNiCl3, Li6VCl8and Li2MnCl4as Alternative Cathode Materials in Primary Li Thermal Batteries. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A3510-A3516	3.9	13
410	Improved electrochemical performance of LiCoPO4 using eco-friendly aqueous binders. <i>Journal of Power Sources</i> , 2018 , 403, 11-19	8.9	13
409	In-situ Studies of High Temperature Thermal Batteries: A Perspective. <i>Frontiers in Energy Research</i> , 2018 , 6,	3.8	5
408	Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells. <i>Solid State Ionics</i> , 2018 , 325, 176-188	3.3	14
407	Corn-cob like nanofibres as cathode catalysts for an effective microstructure design in solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3966-3973	13	22
406	Spinel-based coatings for metal supported solid oxide fuel cells. <i>Materials Research Bulletin</i> , 2017 , 89, 232-244	5.1	10
405	Wet chemical synthesis and characterisation of Ba0.5Sr0.5Ce0.6Zr0.2Gd0.1Y0.1O3 卧roton conductor. <i>Solid State Ionics</i> , 2017 , 303, 52-57	3.3	17
404	Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes. <i>Journal of Power Sources</i> , 2017 , 345, 30-40	8.9	30

403	Cellulose II as bioethanol feedstock and its advantages over native cellulose. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 77, 182-192	16.2	38
402	Robust doped BaCeO3-lelectrolyte for IT-SOFCs. <i>Ionics</i> , 2017 , 23, 2387-2396	2.7	10
401	Investigation of the Relationship between the Structure and Conductivity of the Novel Oxide Ionic Conductor Ba3MoNbO8.5. <i>Chemistry of Materials</i> , 2017 , 29, 4146-4152	9.6	33
400	Challenges in developing direct carbon fuel cells. <i>Chemical Society Reviews</i> , 2017 , 46, 2889-2912	58.5	120
399	Development of Robust Metal-Supported SOFCs and Stack Components in EU METSAPP Consortium. <i>Fuel Cells</i> , 2017 , 17, 508-516	2.9	9
398	In-Situ Thermal Battery Discharge using NiS2 as a Cathode Material. <i>ChemElectroChem</i> , 2017 , 4, 1916-19	9 4 33	15
397	Novel layered perovskite SmBaMn 2 O 5+For SOFCs anode material. <i>Materials Letters</i> , 2017 , 204, 129-1	33 .3	12
396	Electrochemical performance of different carbon fuels on a hybrid direct carbon fuel cell. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 16279-16287	6.7	19
395	Enhancing CO electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. <i>Nature Communications</i> , 2017 , 8, 14785	17.4	147
394	Modification of LSCMICDC cathodes to enhance performance for high temperature CO2 electrolysis using solid oxide electrolysis cells (SOECs). <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7081-7	701930	45
393	Mixing regime simulation and cellulose particle tracing in a stacked frame photocatalytic reactor. <i>Chemical Engineering Journal</i> , 2017 , 313, 301-308	14.7	4
392	Fuel Cells and the Hydrogen Economy. World Scientific Series in Current Energy Issues, 2017, 215-247	0.2	
391	Development and Testing of Impregnated La0.20Sr0.25Ca0.45TiO3Anode Microstructures for Solid Oxide Fuel Cells. <i>ECS Transactions</i> , 2017 , 78, 1385-1395	1	5
390	Charge carrier localised in zero-dimensional (CHNH)Bil clusters. <i>Nature Communications</i> , 2017 , 8, 170	17.4	48
389	La and Ca-Doped A-Site Deficient Strontium Titanates Anode for Electrolyte Supported Direct Methane Solid Oxide Fuel Cell. <i>Journal of the Electrochemical Society</i> , 2017 , 164, F1030-F1036	3.9	10
388	Promoting photocatalytic H evolution by tuning cation deficiency in La and Cr co-doped SrTiO. <i>Chemical Communications</i> , 2017 , 53, 10038-10041	5.8	22
387	Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles. <i>Nature Communications</i> , 2017 , 8, 1855	17.4	87
386	Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals. <i>Nanoscale</i> , 2017 , 9, 18759-18771	7.7	17

385	Infiltrated La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3 based anodes for all ceramic and metal supported solid oxide fuel cells. <i>Journal of Power Sources</i> , 2017 , 372, 99-106	8.9	12
384	Comparative assessment of visible light and UV active photocatalysts by hydroxyl radical quantification. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2017 , 334, 13-19	4.7	60
383	Electrocatalytic ammonia synthesis via a proton conducting oxide cell with BaCe0.5Zr0.3Y0.16Zn0.04O3-lelectrolyte membrane. <i>Catalysis Today</i> , 2017 , 286, 41-50	5.3	17
382	Electrochemical properties and durability of in-situ composite cathodes with SmBa0.5Sr0.5Co2O5+Ifor metal supported solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 1212-1220	6.7	10
381	Impact of the annealing temperature on Pt/g-C3N4 structure, activity and selectivity between photodegradation and water splitting. <i>Catalysis Today</i> , 2017 , 287, 182-188	5.3	50
380	Fuel Cells and the Hydrogen Economy. World Scientific Series in Current Energy Issues, 2017, 215-247	0.2	
379	Switching on electrocatalytic activity in solid oxide cells. <i>Nature</i> , 2016 , 537, 528-531	50.4	276
378	Zirconium Trisulfide as a Promising Cathode Material for Li Primary Thermal Batteries. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A3126-A3130	3.9	22
377	Improvements of energy conversion and storage: general discussion. <i>Faraday Discussions</i> , 2016 , 190, 291-306	3.6	4
376	Benefits to energy efficiency and environmental impact: general discussion. <i>Faraday Discussions</i> , 2016 , 190, 161-204	3.6	2
375	Advancement in knowledge of phenomena and processes: general discussion. <i>Faraday Discussions</i> , 2016 , 190, 525-49	3.6	
374	Smart utilization of cobaltite-based double perovskite cathodes on barrier-layer-free zirconia electrolyte of solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 19019-19025	13	41
373	Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. <i>Nature Energy</i> , 2016 , 1,	62.3	418
372	La1.7Ca0.3Ni0.75Cu0.25O4-Layered Perovskite as Cathode on La0.9Sr0.1Ga0.8Mg0.2O3 or Ce0.8Gd0.2O2 Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells. <i>International Journal of Applied Ceramic Technology</i> , 2016 , 13, 269-273	2	7
371	Development of novel anode material for intermediate temperature SOFC (IT-SOFC). <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11117-11123	13	26
370	Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 11708-11718	13	35
369	Enhanced Photocatalytic H2 Production in Core-Shell Engineered Rutile TiO2. <i>Advanced Materials</i> , 2016 , 28, 5850-6	24	152
368	Flux investigations on composite (La0.8Sr0.2)0.95Cr0.5Fe0.5O3 B c0.198Ce0.012Zr0.789O1.90 oxygen transport membranes. <i>Solid State Ionics</i> , 2016 , 288, 338-341	3.3	6

(2015-2016)

367	Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis. <i>Chemical Communications</i> , 2016 , 52, 1673-6	5.8	66
366	Wetting and interactions of Agtuti and Agtuti alloys with ceramic and steel substrates for use as sealing materials in a DCFC stack. <i>Journal of Materials Science</i> , 2016 , 51, 1766-1778	4.3	13
365	Nickel nanocatalyst exsolution from (La,Sr) (Cr,M,Ni)O3 (MMn,Fe) perovskites for the fuel oxidation layer of Oxygen Transport Membranes. <i>Solid State Ionics</i> , 2016 , 288, 120-123	3.3	38
364	Studies on the crystal structure, magnetic and conductivity properties of titanium oxycarbide solid solution (TiO1ICx). <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5730-5736	13	15
363	Energy band diagram of device-grade silicon nanocrystals. <i>Nanoscale</i> , 2016 , 8, 6623-8	7.7	18
362	Anodes 2016 , 133-160		5
361	Application of infiltrated LSCM-GDC oxide anode in direct carbon/coal fuel cells. <i>Faraday Discussions</i> , 2016 , 190, 269-89	3.6	18
360	Studies of current collection configurations and sealing for tubular hybrid-DCFC. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 18788-18796	6.7	7
359	The application of a novel fluidised photo reactor under UVIVisible and natural solar irradiation in the photocatalytic generation of hydrogen. <i>Chemical Engineering Journal</i> , 2016 , 286, 610-621	14.7	29
358	Probing the energy levels of perovskite solar cells via Kelvin probe and UV ambient pressure photoemission spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 19738-45	3.6	67
357	Oxide Ion Conductivity in the Hexagonal Perovskite Derivative BaMoNbO. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16764-16769	16.4	57
356	Modeling of CH4-assisted SOEC for H2O/CO2 co-electrolysis. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 21839-21849	6.7	42
355	Comparative study of durability of hybrid direct carbon fuel cells with anthracite coal and bituminous coal. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 18797-18806	6.7	15
354	In Situ Growth of Nanoparticles in Layered Perovskite La0.8Sr1.2Fe0.9Co0.1O4D an Active and Stable Electrode for Symmetrical Solid Oxide Fuel Cells. <i>Chemistry of Materials</i> , 2016 , 28, 2981-2993	9.6	109
353	Inorganic perovskite photocatalysts for solar energy utilization. <i>Chemical Society Reviews</i> , 2016 , 45, 59	51 5 8. 9 8	4318
352	Role of coal characteristics in the electrochemical behaviour of hybrid direct carbon fuel cells. <i>Energy and Environmental Science</i> , 2016 , 9, 2868-2880	35.4	36
351	A perspective on liquid salts for energy and materials. <i>Faraday Discussions</i> , 2016 , 190, 551-9	3.6	3
350	Study on Direct Flame Solid Oxide Fuel Cell Using Flat Burner and Ethylene Flame. <i>ECS Transactions</i> , 2015 , 68, 1989-1999	1	12

349	Macro-mesoporous resorcinolformaldehyde polymer resins as amorphous metal-free visible light photocatalysts. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 15413-15419	13	33
348	Enhancement of redox stability and electrical conductivity by doping various metals on ceria, Ce1\(\text{M} \text{M} \text{XO2}(\text{M} = \text{Ni, Cu, Co, Mn, Ti, Zr}). International Journal of Hydrogen Energy, 2015 , 40, 12003-12008	6.7	32
347	Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. <i>Chemistry of Materials</i> , 2015 , 27, 2612-2618	9.6	346
346	Ce(Mn,Fe)O2[La,Sr)(Fe,Mn)O3 composite as an active cathode for electrochemical reduction of CO2 in proton conducting solid oxide cells. <i>Solid State Ionics</i> , 2015 , 275, 106-109	3.3	15
345	Crystal structure of A-site deficient La0.2Sr0.7-xCaxTiO3 perovskite at ambient conditions and high temperatures: a neutron powder diffraction study. <i>Dalton Transactions</i> , 2015 , 44, 10828-33	4.3	1
344	Facile structure design based on C3N4 for mediator-free Z-scheme water splitting under visible light. <i>Catalysis Science and Technology</i> , 2015 , 5, 3416-3422	5.5	77
343	The effect of Pt NPs crystallinity and distribution on the photocatalytic activity of Pt-g-C3N4. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 13929-36	3.6	68
342	Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor. <i>Faraday Discussions</i> , 2015 , 182, 227-39	3.6	56
341	Calcium manganite as oxygen electrode materials for reversible solid oxide fuel cell. <i>Faraday Discussions</i> , 2015 , 182, 289-305	3.6	15
340	H2FC SUPERGEN: An overview of the Hydrogen and Fuel Cell research across the UK. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 5534-5543	6.7	18
339	Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. <i>Nature Communications</i> , 2015 , 6, 8120	17.4	438
338	In Situ Tailored Nickel Nano-Catalyst Layer for Internal Reforming Hydrocarbon Fueled SOFCs. <i>ECS Transactions</i> , 2015 , 68, 1121-1128	1	2
337	Development of Tailored Porous Microstructures for Infiltrated Catalyst Electrodes by Aqueous Tape Casting Methods. <i>ECS Transactions</i> , 2015 , 68, 2047-2056	1	7
336	Highly efficient, coking-resistant SOFCs for energy conversion using biogas fuels. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19068-19076	13	26
335	Electrochemical Impedance Spectroscopy Investigation of the Anodic Functionalities and Processes in LSCM-CGO-Ni Systems. <i>ECS Transactions</i> , 2015 , 68, 2011-2018	1	6
334	Application of Exsolved Structures as a Route to More Robust Anodes for Improved Biogas Utilisation in SOFCs. <i>ECS Transactions</i> , 2015 , 68, 2029-2036	1	6
333	Screen Printed Porous La0.20Sr0.25Ca0.45TiO3 Fuel Electrode Scaffold Microstructures: Optimisation of Interaction with Impregnated Catalysts for More Durable Performance. <i>ECS Transactions</i> , 2015 , 68, 1499-1508	1	5
332	Understanding of CO2 Electrochemical Reduction Reaction Process via High Temperature Solid Oxide Electrolysers. <i>ECS Transactions</i> , 2015 , 68, 3535-3551	1	6

331	Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. <i>Nature Materials</i> , 2015 , 14, 205-9	27	475
330	High H? ionic conductivity in barium hydride. <i>Nature Materials</i> , 2015 , 14, 95-100	27	64
329	Synthesis and characterization of B-site doped La 0.20 Sr 0.25 Ca 0.45 TiO 3 as SOFC anode materials. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 760-766	6.7	22
328	Modified strontium titanates: from defect chemistry to SOFC anodes. <i>RSC Advances</i> , 2015 , 5, 1168-1180	03.7	65
327	Synthesis and lithium-storage properties of MnO/reduced graphene oxide composites derived from graphene oxide plus the transformation of Mn(VI) to Mn(II) by the reducing power of graphene oxide. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 297-303	13	61
326	Short Stack and Full System Test Using alCeramic A-Site Deficient Strontium Titanate Anode. <i>Fuel Cells</i> , 2015 , 15, 682-688	2.9	15
325	Image Analysis and Modeling of the Orientation of Pores in a Constrained Film on a Rigid Substrate. Journal of the American Ceramic Society, 2015 , 98, 2403-2410	3.8	4
324	Hierarchically nanoporous La1.7Ca0.3CuO4Iand La1.7Ca0.3NixCu1IIO4I(0.25 /k /0.75) as potential cathode materials for IT-SOFCs. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13468-13475	13	31
323	Nano-composite structural NiBn alloy anodes for high performance and durability of direct methane-fueled SOFCs. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 13801-13806	13	36
322	Oxygen storage capacity and thermal stability of the CuMnO2©eO2 composite system. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12958-12964	13	31
321	Fine-tuning B-site of a Chromite based Perovskite Catalyst for Steam Reforming of Glycerol. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1735, 39		
320	Organic Semiconductor g-C3N4 Modified TiO2 Nanotube Arrays for Enhanced Photoelectrochemical Performance in Wastewater Treatment. <i>Energy Technology</i> , 2015 , 3, 982-988	3.5	33
319	Evidence and Model for Strain-Driven Release of Metal Nanocatalysts from Perovskites during Exsolution. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 5106-10	6.4	103
318	A 60-Second Microwave-Assisted Synthesis of Nickel Foam and Its Application to the Impregnation of Porous Scaffolds. <i>Journal of the Electrochemical Society</i> , 2015 , 162, F273-F279	3.9	7
317	Membrane reactors for ammonial production 2015 , 543-563		2
316	Structural, electrochemical and magnetic characterization of the layered-type PrBa0.5Sr0.5Co2O5+perovskite. <i>Journal of Solid State Chemistry</i> , 2014 , 213, 268-274	3.3	14
315	X-ray photoelectron spectroscopy of Sm-doped layered perovskite for intermediate temperature-operating solid oxide fuel cell. <i>Applied Surface Science</i> , 2014 , 288, 695-701	6.7	26
314	Influence of atmosphere on redox structure of BaCe 0.9 Y 0.1 O 2.95 Insight from neutron diffraction study. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 12804-12811	6.7	30

313	Structure and properties of MgMxCr2⊠O4 (M = Li, Mg, Ti, Fe, Cu, Ga) spinels for electrode supports in solid oxide fuel cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18106-18114	13	9
312	Fabrication and characterisation of a large-area solid oxide fuel cell based on dual tape cast YSZ electrode skeleton supported YSZ electrolytes with vanadate and ferrite perovskite-impregnated anodes and cathodes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19150-19155	13	29
311	Uniformly dispersed CdS/CdSe quantum dots co-sensitized TiO2 nanotube arrays with high photocatalytic property under visible light. <i>Materials Letters</i> , 2014 , 132, 231-235	3.3	16
310	Performance of Direct Carbon Fuel Cells Operated on Coal and Effect of Operation Mode. <i>Journal of the Electrochemical Society</i> , 2014 , 161, F588-F593	3.9	30
309	Application of Ternary Carbonate in Hybrid Direct Coal Fuel Cells. <i>ECS Transactions</i> , 2014 , 59, 281-288	1	5
308	Hybrid Molten Carbonate/Solid Oxide Direct Carbon Fuel Cells 2013 , 403-414		2
307	Perovskite Defect Chemistry as Exemplified by Strontium Titanate 2013 , 397-415		6
306	Hybrid Direct Carbon Fuel Cells with Different Types of Mineral Coal. <i>ECS Transactions</i> , 2013 , 57, 3013-3	3021	13
305	Synthesis and Electrochemical Characterization of T*La0.84Sm0.96Sr0.2CuO4 as a Cathode Material for IT-SOFC. <i>ECS Transactions</i> , 2013 , 58, 93-99	1	
304	In situ growth of nanoparticles through control of non-stoichiometry. <i>Nature Chemistry</i> , 2013 , 5, 916-23	3 17.6	569
304	In situ growth of nanoparticles through control of non-stoichiometry. <i>Nature Chemistry</i> , 2013 , 5, 916-23 Improving the Performance of SOFC Anodes by Decorating Perovskite with Ni Nanoparticles. <i>ECS Transactions</i> , 2013 , 57, 1211-1216	1	569
	Improving the Performance of SOFC Anodes by Decorating Perovskite with Ni Nanoparticles. <i>ECS</i>	,	
303	Improving the Performance of SOFC Anodes by Decorating Perovskite with Ni Nanoparticles. <i>ECS Transactions</i> , 2013 , 57, 1211-1216 Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes.	1	2
303	Improving the Performance of SOFC Anodes by Decorating Perovskite with Ni Nanoparticles. <i>ECS Transactions</i> , 2013 , 57, 1211-1216 Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes. <i>ECS Transactions</i> , 2013 , 57, 1851-1857 A Solid Oxide Fuel Cell with Lanthanum and Calcium Co-Doped Strontium Titanate as Support. <i>ECS</i>	1	2 8
303 302 301	Improving the Performance of SOFC Anodes by Decorating Perovskite with Ni Nanoparticles. <i>ECS Transactions</i> , 2013 , 57, 1211-1216 Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes. <i>ECS Transactions</i> , 2013 , 57, 1851-1857 A Solid Oxide Fuel Cell with Lanthanum and Calcium Co-Doped Strontium Titanate as Support. <i>ECS Transactions</i> , 2013 , 57, 1415-1422 Calculation of a Standard Reformed Biogas Composition and Testing on SOFC Anode Powders. <i>ECS</i>	1 1 1	2 8
303 302 301 300	Improving the Performance of SOFC Anodes by Decorating Perovskite with Ni Nanoparticles. <i>ECS Transactions</i> , 2013 , 57, 1211-1216 Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes. <i>ECS Transactions</i> , 2013 , 57, 1851-1857 A Solid Oxide Fuel Cell with Lanthanum and Calcium Co-Doped Strontium Titanate as Support. <i>ECS Transactions</i> , 2013 , 57, 1415-1422 Calculation of a Standard Reformed Biogas Composition and Testing on SOFC Anode Powders. <i>ECS Transactions</i> , 2013 , 57, 1527-1532 An investigation of crystal structure, surface area and surface chemistry of strontium niobate and	1 1 1	2 8 2
303 302 301 300 299	Improving the Performance of SOFC Anodes by Decorating Perovskite with Ni Nanoparticles. <i>ECS Transactions</i> , 2013 , 57, 1211-1216 Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes. <i>ECS Transactions</i> , 2013 , 57, 1851-1857 A Solid Oxide Fuel Cell with Lanthanum and Calcium Co-Doped Strontium Titanate as Support. <i>ECS Transactions</i> , 2013 , 57, 1415-1422 Calculation of a Standard Reformed Biogas Composition and Testing on SOFC Anode Powders. <i>ECS Transactions</i> , 2013 , 57, 1527-1532 An investigation of crystal structure, surface area and surface chemistry of strontium niobate and their influence on photocatalytic performance. <i>Dalton Transactions</i> , 2013 , 42, 7880-7 Development and performance of MgFeCrO4 Ibased electrodes for solid oxide fuel cells. <i>Journal</i>	1 1 1 4-3	2 8 2 2 16

295	Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, an Approach towards More Robust SOFCs. <i>ECS Transactions</i> , 2013 , 57, 1175-1184	1	10	
294	Photocatalytic H2 generation from spinels ZnFe2O4, ZnFeGaO4 and ZnGa2O4. <i>Catalysis Today</i> , 2013 , 199, 22-26	5.3	77	
293	Spinglass transition in La0.75Sr0.25Mn0.5Cr0.5MAlxO3Derovskites. <i>Materials Research Bulletin</i> , 2013 , 48, 2482-2490	5.1	6	
292	Pre-coating of LSCM perovskite with metal catalyst for scalable high performance anodes. International Journal of Hydrogen Energy, 2013, 38, 9519-9524	6.7	28	
291	Fabrication of anode-supported zirconia thin film electrolyte based core intermediate temperature solid oxide fuel cells. <i>Progress in Natural Science: Materials International</i> , 2013, 23, 302-307	3.6	2	
290	Synthesis of ammonia directly from air and water at ambient temperature and pressure. <i>Scientific Reports</i> , 2013 , 3, 1145	4.9	277	
289	Alternative Materials for SOFCs, Opportunities and Limitations. <i>Green Energy and Technology</i> , 2013 , 16.	3 -1.8 0	3	
288	Remarkable transition from rocksalt/perovskite layered structure to fluorite/rocksalt layered structure in rapidly cooled Ln u uOll Scientific Reports, 2013 , 3, 1504	4.9	4	
287	Electrolysis of CO2 in a proton conducting membrane. <i>Solid State Ionics</i> , 2013 , 252, 157-164	3.3	37	
286	Scaling up of the hybrid direct carbon fuel cell technology. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 8497-8502	6.7	19	
285	Development and Performance of MnFeCrO4-Based Electrodes for Solid Oxide Fuel Cells. <i>Advanced Energy Materials</i> , 2013 , 3, 1454-1462	21.8	21	
284	Scale Up and Anode Development for La-Doped SrTiO3 Anode-Supported SOFCs. <i>Journal of the American Ceramic Society</i> , 2013 , 96, 1718-1723	3.8	25	
283	Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. <i>Energy and Environmental Science</i> , 2013 , 6, 256-266	35.4	197	
282	Fuel Cells and the Hydrogen Economy. <i>Materials and Energy</i> , 2013 , 427-454			
281	Ceramic proton conducting membranes for the electrochemical production of syngas. <i>Solid State Ionics</i> , 2012 , 216, 36-40	3.3	32	
280	On the existence of A-site deficiency in perovskites and its relation to the electrochemical performance. <i>Advanced Materials</i> , 2012 , 24, 528-32	24	65	
279	Syntheses and proton conductivity of mesoporous Nd2O3BiO2 and NdOClBiO2 composites. Journal of Materials Science, 2012 , 47, 2146-2154	4.3	10	
278	Development of tubular hybrid direct carbon fuel cell. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 19337-19344	6.7	37	

277	The catalytic effect of impregnated (La, Sr)(Ti, Mn)O3\text{\text{\text{Rw}}}with CeO2 and Pd as potential anode materials in high temperature solid oxide fuel cells. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 14511-14517	6.7	13
276	(La,Sr)(Cr,Mn)O3/GDC cathode for high temperature steam electrolysis and steam-carbon dioxide co-electrolysis. <i>Solid State Ionics</i> , 2012 , 225, 131-135	3.3	78
275	Demonstration of high power, direct conversion of waste-derived carbon in a hybrid direct carbon fuel cell. <i>Energy and Environmental Science</i> , 2012 , 5, 6973	35.4	116
274	A red metallic oxide photocatalyst. <i>Nature Materials</i> , 2012 , 11, 595-8	27	370
273	Modeling a Reversible Solid Oxide Fuel Cell as a Storage Device Within AC Power Networks. <i>Fuel Cells</i> , 2012 , 12, 773-786	2.9	14
272	Solid Oxide Fuel Cells 2012 , 261-276		3
271	Heteroatom-Modulated Switching of Photocatalytic Hydrogen and Oxygen Evolution Preferences of Anatase TiO2 Microspheres. <i>Advanced Functional Materials</i> , 2012 , 22, 3233-3238	15.6	114
270	Directly Imaging Interstitial Oxygen in Silicate Apatite. <i>Advanced Energy Materials</i> , 2012 , 2, 316-321	21.8	26
269	Ammonia and related chemicals as potential indirect hydrogen storage materials. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 1482-1494	6.7	613
268	Characterization of layered perovskite oxides NdBa1\(\mathbb{B}\)SrxCo2O5+\(\mathbb{L}\)x\(\mathbb{L}\)D and 0.5) as cathode materials for IT-SOFC. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 5920-5929	6.7	61
267	Evaluation of Ca Doped La0.2Sr0.7TiO3as an Alternative Material for Use in SOFC Anodes. <i>Journal of the Electrochemical Society</i> , 2012 , 159, F757-F762	3.9	48
266	Impedance Studies on LSCMIDC Cathode for High Temperature CO2 Electrolysis. <i>Electrochemical and Solid-State Letters</i> , 2012 , 15, B31		59
265	Impedance Studies on LSCM/GDC Composite Cathode for High Temperature CO2 Electrolysis. <i>ECS Transactions</i> , 2012 , 41, 87-95	1	7
264	Alternative Cathode Material for CO2Reduction by High Temperature Solid Oxide Electrolysis Cells. Journal of the Electrochemical Society, 2012 , 159, F442-F448	3.9	120
263	Composite Oxygen Electrode Based on LSCM for Steam Electrolysis in a Proton Conducting Solid Oxide Electrolyzer. <i>Journal of the Electrochemical Society</i> , 2012 , 159, F763-F767	3.9	66
262	Characterisation of conductivity of the (Ce xY0.2-x)Sc0.6 Zr3.2O8-40 Ceramica, 2012 , 58, 1-7	1	
261	The role of defect chemistry in strontium titanates utilised for high temperature steam electrolysis. Journal of Materials Chemistry, 2011 , 21, 9367		74
260	In Situ High-Temperature Neutron Diffraction Study of A-Site Deficient Perovskites with Transition Metals on the B-Sublattice and StructureConductivity Correlation. <i>Chemistry of Materials</i> , 2011 , 23, 1841-1850	9.6	16

259	Enhancing Electronic Conductivity in Strontium Titanates through Correlated A and B-Site Doping. <i>Chemistry of Materials</i> , 2011 , 23, 1607-1617	9.6	69
258	Red-ox behaviour in the La0.6Sr0.4CoO3\text{HECeO2} system. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15517	1	11
257	NbTi0.5Ni0.5O4 as anode compound material for SOFCs. Solid State Ionics, 2011, 197, 37-41	3.3	20
256	g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation. <i>International Journal of Hydrogen Energy</i> , 2011 , 36, 13501-13507	6.7	202
255	Synthesis and characterization of chromium spinels as potential electrode support materials for intermediate temperature solid oxide fuel cells. <i>Journal of Materials Science</i> , 2011 , 46, 7191-7197	4.3	28
254	The La0.95Ni0.6Fe0.4O3feO2 system: Phase equilibria, crystal structure of components and transport properties. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 1499-1504	3.3	6
253	La-doped SrTiO3 as anode material for IT-SOFC. Solid State Ionics, 2011, 192, 491-493	3.3	75
252	Electrical properties of bulk and grain boundaries of scandia-stabilized zirconia co-doped with yttria and ceria. <i>Solid State Ionics</i> , 2011 , 192, 148-152	3.3	14
251	Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 314-332	21.8	276
250	Structure, conductivity and redox reversibility of Ca-doped cerium metavanadate. <i>Journal of Materials Chemistry</i> , 2011 , 21, 8854		17
249	Novel redox reversible oxide, Sr-doped cerium orthovanadate to metavanadate. <i>Journal of Materials Chemistry</i> , 2011 , 21, 525-531		24
248	Direct synthesis of methane from CO2/H2O in an oxygen-ion conducting solid oxide electrolyser. <i>Energy and Environmental Science</i> , 2011 , 4, 2218	35.4	135
247	Electrochemical reduction of CO2 in a proton conducting solid oxide electrolyser. <i>Journal of Materials Chemistry</i> , 2011 , 21, 195-198		94
246	Symmetric and reversible solid oxide fuel cells. <i>RSC Advances</i> , 2011 , 1, 1403	3.7	187
245	Structural Disorder in Doped Zirconias, Part I: The Zr0.8Sc0.2\(\mathbb{R}\)YxO1.9 (0.0\(\hat{L}\)\(\hat{L}\)\(\hat{D}\).2) System. Chemistry of Materials, 2011 , 23, 1356-1364	9.6	60
244	Investigation of Microstructural and Electrochemical Properties of Impregnated (La,Sr)(Ti,Mn)O3⊞s a Potential Anode Material in High-Temperature Solid Oxide Fuel Cells. <i>Chemistry of Materials</i> , 2011 , 23, 3841-3847	9.6	34
243	Catalysis and oxidation of carbon in a hybrid direct carbon fuel cell. <i>Journal of Power Sources</i> , 2011 , 196, 7318-7322	8.9	58
242	B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes. <i>Journal of Power Sources</i> , 2011 , 196, 7323-7327	8.9	66

241	Optimisation of the Solid Oxide Fuel Cell (SOFC) cathode material Ca3Co4O9\(\textit{Journal of Power Sources}\), 196, 7328-7332	8.9	26
240	StructureBroperty relationship in layered perovskite cathode LnBa0.5Sr0.5Co2O5+[(Ln = Pr, Nd) for solid oxide fuel cells. <i>Journal of Power Sources</i> , 2011 , 196, 7333-7337	8.9	36
239	Order and disorder in Ca2ND0.90H0.10A structural and thermal study. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 2088-2096	3.3	4
238	Transport properties of multi-cations doped cerium oxide. <i>Solid State Ionics</i> , 2011 , 184, 27-30	3.3	9
237	8YSZ/(La0.8Sr0.2)0.95MnO3E athode performance at 1Bbar oxygen pressures. <i>Solid State Ionics</i> , 2011 , 192, 394-397	3.3	8
236	Characterization of YSr2Fe3O8las electrode materials for SOFC. <i>Solid State Ionics</i> , 2011 , 192, 225-228	3.3	17
235	A structural study of the proton conducting B-site ordered perovskite Ba3Ca1.18Ta1.82O8.73. Journal of Physics Condensed Matter, 2011 , 23, 234111	1.8	7
234	Thermal Cycling Evaluation of Rolled Tubular Solid Oxide Fuel Cells. <i>Journal of Fuel Cell Science and Technology</i> , 2011 , 8,		4
233	Probing the superconducting ground state near the charge density wave phase transition in Cu0.06TiSe2. <i>Physical Review B</i> , 2010 , 81,	3.3	9
232	Crystal Structure, Oxygen Nonstoichiometry, and Conductivity of Mixed Ionic E lectronic Conducting Perovskite Composites with CeO[sub 2]. <i>Journal of the Electrochemical Society</i> , 2010 , 157, B159	3.9	16
231	Design of Anode Materials for IT SOFC: Effect of Complex Oxide Promoters and Pt Group Metals on Activity and Stability in Methane Steam Reforming of Ni/YSZ (ScSZ) Cermets. <i>Journal of Fuel Cell Science and Technology</i> , 2010 , 7,		3
230	Electrochemical Investigation of Composite Cathodes with SmBa0.5Sr0.5Co2O5+Cathodes for Intermediate Temperature-Operating Solid Oxide Fuel Cell <i>Chemistry of Materials</i> , 2010 , 22, 883-892	9.6	106
229	Conductivity Behavior of Composites in the La0.6Sr0.4CoO3\textsup CeO2 System: Function of Connectivity and Interfacial Interactions. <i>Chemistry of Materials</i> , 2010 , 22, 4700-4711	9.6	17
228	Intermediate temperature stable proton conductors based upon SnP2O7, including additional H3PO4. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7827		32
227	A direct urea fuel cell [bower from fertiliser and waste. <i>Energy and Environmental Science</i> , 2010 , 3, 438	35.4	248
226	Characterisation of lower temperature sintered zinc-doped barium calcium niobate proton conducting electrolytes. <i>Journal of Materials Chemistry</i> , 2010 , 20, 8506		14
225	Structure and Properties of La0.4Sr0.4TiO3 Ceramics for Use as Anode Materials in Solid Oxide Fuel Cells. <i>Chemistry of Materials</i> , 2010 , 22, 5042-5053	9.6	155
224	Synthesis and visible light photoactivity of a high temperature stable yellow TiO2 photocatalyst. Journal of Materials Chemistry, 2010 , 20, 8700		27

A redox-stable efficient anode for solid-oxide fuel cells **2010**, 259-262

222	Advanced anodes for high-temperature fuel cells 2010 , 213-223		3
221	Electrochemical characteristics of cathodes based on perovskites modified by ceria. <i>Russian Journal of Electrochemistry</i> , 2010 , 46, 805-810	1.2	4
220	Synthesis and characterization of (Pr0.75Sr0.25)1 IkCr0.5Mn0.5O3 Illus anode for SOFCs. <i>Solid State Ionics</i> , 2010 , 180, 1683-1689	3.3	14
219	Investigation of conductivity of (CexY0.2 lk)Sc0.6Zr3.2O8 II(0 Solid State Ionics, 2010 , 181, 1344-1348	3.3	7
218	Preparation and characterization of copper based cermet anodes for use in solid oxide fuel cells at intermediate temperatures. <i>Journal of Electroceramics</i> , 2010 , 24, 270-287	1.5	13
217	Adhesion and Percolation Parameters in Two Dimensional PdIISCM Composites for SOFC Anode Current Collection. <i>Advanced Functional Materials</i> , 2010 , 20, 861-866	15.6	13
216	A fuel cell operating between room temperature and 250 LC based on a new phosphoric acid based composite electrolyte. <i>Journal of Power Sources</i> , 2010 , 195, 6983-6987	8.9	11
215	Proton conductivity of potassium doped barium zirconates. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 93-98	3.3	27
214	Investigation of electrical and mechanical properties of tetragonal/cubic zirconia composite electrolytes prepared through stabilizer coating method. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 9427-9433	6.7	14
213	Modeling of IT-SOFC with indirect internal reforming operation fueled by methane: Effect of oxygen adding as autothermal reforming. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 13271-13	297	23
212	Fabrication and electrochemical characterization of tape cast BaCe0.5Zr0.3Y0.16Zn0.04O3I electrode/electrolyte structures. <i>Solid State Ionics</i> , 2010 , 181, 168-172	3.3	8
211	Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation 2010 , 251-254		
210	Investigation of the Structural and Catalytic Requirements for High-Performance SOFC Anodes Formed by Infiltration of LSCM. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, B48		132
209	Intermediate Temperature SOFC Anode Component based on A-site Deficient La-doped SrTiO3. <i>ECS Transactions</i> , 2009 , 25, 2213-2222	1	5
208	Characterization of Cuprate based Cathode Structures by AC Impedance. <i>ECS Transactions</i> , 2009 , 25, 2689-2698	1	2
207	Bulk and Grain Boundary Conductivities as Function of Temperature and Oxygen Partial Pressure of Scandia-Stabilized Zirconia Co-Doped with Yttria and Ceria. <i>ECS Transactions</i> , 2009 , 25, 1635-1642	1	5
206	Ni/C Slurries Based on Molten Carbonates as a Fuel for Hybrid Direct Carbon Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2009 , 156, B716	3.9	70

205	SmBaCo2O5+d and LnBa0.5Sr0.5Co2O5+Dependential Cathode Materials for IT-SOFC. <i>ECS Transactions</i> , 2009 , 25, 2707-2715	1	8
204	Structural, magnetic and electrochemical characterization of La0.83A0.17Fe0.5Cr0.5O3[[A=Ba, Ca) perovskites. <i>Materials Research Bulletin</i> , 2009 , 44, 1451-1457	5.1	8
203	Synthesis, structure and magnetic properties of Sr2Fe1図GaxMoO6 (0瓜瓜0.6) double perovskites. <i>Materials Research Bulletin</i> , 2009 , 44, 2181-2185	5.1	3
202	Syntheses, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. <i>Advanced Functional Materials</i> , 2009 , 19, 2826-2833	15.6	129
201	Investigation of electrical and mechanical properties of 3YSZ/8YSZ composite electrolytes. <i>Solid State Ionics</i> , 2009 , 180, 57-62	3.3	52
200	Proton conductivity of Al(H2PO4)3間3PO4 composites at intermediate temperature. <i>Solid State lonics</i> , 2009 , 180, 343-350	3.3	17
199	Crystal structure, thermochemical stability, electrical and magnetic properties of the two-phase composites in the La0.8Sr0.2MnO3 🗄 🗓 EO2 system. <i>Solid State Ionics</i> , 2009 , 180, 778-783	3.3	21
198	Investigation of electrical and mechanical properties of 3Y-TZP/Cubic zirconia solid electrolytes with composite structure prepared by near net shape forming. <i>Solid State Ionics</i> , 2009 , 180, 904-909	3.3	2
197	Development of anode material based on La-substituted SrTiO3 perovskites doped with manganese and/or gallium for SOFC. <i>Journal of Power Sources</i> , 2009 , 192, 43-50	8.9	51
196	Electronic conductivity of modified La0.95Ni0.6Fe0.4O3Derovskites. <i>Journal of Power Sources</i> , 2009 , 193, 175-179	8.9	13
195	Structural, thermal and electrochemical properties of layered perovskite SmBaCo2O5+d, a potential cathode material for intermediate-temperature solid oxide fuel cells. <i>Journal of Power Sources</i> , 2009 , 194, 704-711	8.9	96
194	Preparation of stabilized Gd-doped BaPrO3 materials by Zr substitution. <i>Ceramics International</i> , 2009 , 35, 1819-1827	5.1	11
193	Perovskite Oxide Anodes for SOFCs. Fuel Cells and Hydrogen Energy, 2009, 167-182		11
192	Structure, Conductivity, and Thermal Expansion Studies of Redox Stable Rutile Niobium Chromium Titanates in Oxidizing and Reducing Conditions. <i>Chemistry of Materials</i> , 2009 , 21, 3549-3561	9.6	24
191	Activation and Ripening of Impregnated Manganese Containing Perovskite SOFC Electrodes under Redox Cycling. <i>Chemistry of Materials</i> , 2009 , 21, 1077-1084	9.6	51
190	Thermochemical and Structural Stability of A- and B-Site-Substituted Perovskites in Hydrogen-Containing Atmosphere. <i>Chemistry of Materials</i> , 2009 , 21, 1514-1523	9.6	29
189	Reduction studies and evaluation of surface modified A-site deficient La-doped SrTiO3 as anode material for IT-SOFCs. <i>Journal of Materials Chemistry</i> , 2009 , 19, 8119		77
188	Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties. <i>Chemistry of Materials</i> , 2009 , 21, 2540-2546	9.6	107

(2008-2009)

187	Advanced Electrochemical Properties of LnBa[sub 0.5]Sr[sub 0.5]Co[sub 2]O[sub 5+¶(Ln=Pr, Sm, and Gd) as Cathode Materials for IT-SOFC. <i>Journal of the Electrochemical Society</i> , 2009 , 156, B682	3.9	135
186	Location of Deuterium Positions in the Proton-Conducting Perovskite BaCe0.4Zr0.4Sc0.2O2.90lkD2O by Neutron Powder Diffraction. <i>Chemistry of Materials</i> , 2009 , 21, 215-22	2 9.6	31
185	Effect of Oxygen Non Stoichiometry and Oxidation State of Transition Elements on High-Temperature Phase Transition in A-Site Deficient La0.95Ni0.6Fe0.4O3lPerovskite. <i>Chemistry of Materials</i> , 2009 , 21, 5307-5318	9.6	22
184	Electrochemical performance of a hybrid direct carbon fuel cell powered by pyrolysed MDF. <i>Energy and Environmental Science</i> , 2009 , 2, 687	35.4	56
183	Structural and electrical properties of calcium and strontium hydrides. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2766		43
182	The Integrated Project SOFC600 Development of Low-temperature SOFC. <i>ECS Transactions</i> , 2009 , 25, 29-34	1	6
181	Structural origins of the differing grain conductivity values in BaZr0.9Y0.1O2.95 and indication of novel approach to counter defect association. <i>Journal of Materials Chemistry</i> , 2008 , 18, 3414		79
180	Is YSZ stable in the presence of Cu?. Journal of Materials Chemistry, 2008, 18, 5072		20
179	Electrochemical oxidation of solid carbon in hybrid DCFC with solid oxide and molten carbonate binary electrolyte. <i>Energy and Environmental Science</i> , 2008 , 1, 148	35.4	130
178	Engineering Composite Oxide SOFC Anodes for Efficient Oxidation of Methane. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, B16		123
177	Production of high conductivity composite zirconia solid oxide electrolytes with good mechanical strength through net-shape. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5237		8
176	(La0.75Sr0.25)0.95Mn0.5Cr0.5O3 as the cathode of solid oxide electrolysis cells for high temperature hydrogen production from steam. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2349		153
175	Evolution of conductivity, structure and thermochemical stability of lanthanum manganese iron nickelate perovskites. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5147		22
174	Characterization of Diffuse Scattering in Yttria-Stabilized Zirconia by Electron Diffraction and High-Resolution Transmission Electron Microscopy. <i>Chemistry of Materials</i> , 2008 , 20, 5933-5938	9.6	16
173	Efficient Reduction of CO[sub 2] in a Solid Oxide Electrolyzer. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, B167		174
172	Effect of Minor Additions of CeO2 on Conductivity of Perovskites with Mixed Ionic-Electronic Conductivity. <i>ECS Transactions</i> , 2008 , 13, 115-122	1	5
171	Synthesis of Visible-Light-Activated Yellow AmorphousTiO2Photocatalyst. <i>International Journal of Photoenergy</i> , 2008 , 2008, 1-6	2.1	23
170	Spin-glass transition in a La-doped Sr2MnWO6 double perovskite. <i>Physical Review B</i> , 2008 , 77,	3.3	7

169	Solid state electrochemistry of direct carbon/air fuel cells. Fuel Cells Bulletin, 2008, 2008, 10-13	1.6	11
168	Effect of complex oxide promoters and Pd on activity and stability of Ni/YSZ (ScSZ) cermets as anode materials for IT SOFC. <i>Catalysis Today</i> , 2008 , 131, 226-237	5.3	15
167	Ce-substituted LSCM as new anode material for SOFC operating in dry methane. <i>Solid State Ionics</i> , 2008 , 179, 1562-1566	3.3	48
166	Electrical conductivity and structure of solid solutions formed in the La0.8Sr0.2MnO3Ia0.95Ni0.6Fe0.4O3 system. <i>Solid State Ionics</i> , 2008 , 179, 1432-1435	3.3	6
165	Solid state electrochemistry of direct carbon/air fuel cells. Solid State Ionics, 2008, 179, 1417-1421	3.3	77
164	High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3E <i>Solid State Ionics</i> , 2008 , 179, 678-682	3.3	56
163	Co-doping of scandia-zirconia electrolytes for SOFCs. <i>Faraday Discussions</i> , 2007 , 134, 41-9; discussion 103-18, 415-9	3.6	43
162	Effect of Ti-substitution on the Electrical Properties of MnNb2O6-Il Chemistry of Materials, 2007 , 19, 2310-2315	9.6	14
161	A new anode for solid oxide fuel cells with enhanced OCV under methane operation. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 1821-30	3.6	33
	Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce,Zr)1⊠ Scx O3 Ⅲ		
160	Solid State Ionics, 2007, 178, 635-640	3.3	124
159		3·3 3·3	124
	Solid State Ionics, 2007, 178, 635-640 Catalytic properties of the proton conductor materials: Sr3CaZr0.5Ta1.5O8.75, BaCe0.9Y0.1O2.95		
159	Catalytic properties of the proton conductor materials: Sr3CaZr0.5Ta1.5O8.75, BaCe0.9Y0.1O2.95 and Ba3Ca1.18Nb1.82O8.73 for reverse water gas shift. <i>Solid State Ionics</i> , 2007 , 178, 717-722 Improvement of the electrochemical properties of novel solid oxide fuel cell anodes, La0.75Sr0.25Cr0.5Mn0.5O3land La4Sr8Ti11Mn0.5Ga0.5O37.5Jusing CulfSZ-based cermets.	3.3	14
159 158	Catalytic properties of the proton conductor materials: Sr3CaZr0.5Ta1.5O8.75, BaCe0.9Y0.1O2.95 and Ba3Ca1.18Nb1.82O8.73 for reverse water gas shift. <i>Solid State Ionics</i> , 2007 , 178, 717-722 Improvement of the electrochemical properties of novel solid oxide fuel cell anodes, La0.75Sr0.25Cr0.5Mn0.5O3Iand La4Sr8Ti11Mn0.5Ga0.5O37.5Jusing CuISZ-based cermets. <i>Electrochimica Acta</i> , 2007 , 52, 7217-7225	3.3 6.7 8.9	14
159 158 157	Catalytic properties of the proton conductor materials: Sr3CaZr0.5Ta1.5O8.75, BaCe0.9Y0.1O2.95 and Ba3Ca1.18Nb1.82O8.73 for reverse water gas shift. <i>Solid State Ionics</i> , 2007 , 178, 717-722 Improvement of the electrochemical properties of novel solid oxide fuel cell anodes, La0.75Sr0.25Cr0.5Mn0.5O3land La4Sr8Ti11Mn0.5Ga0.5O37.5pusing CulySZ-based cermets. <i>Electrochimica Acta</i> , 2007 , 52, 7217-7225 Chemical and electrical properties of BaPr0.7Gd0.3O3l. <i>Journal of Power Sources</i> , 2007 , 169, 53-58	3.3 6.7 8.9	14 48 20
159 158 157	Catalytic properties of the proton conductor materials: Sr3CaZr0.5Ta1.5O8.75, BaCe0.9Y0.1O2.95 and Ba3Ca1.18Nb1.82O8.73 for reverse water gas shift. <i>Solid State Ionics</i> , 2007 , 178, 717-722 Improvement of the electrochemical properties of novel solid oxide fuel cell anodes, La0.75Sr0.25Cr0.5Mn0.5O3land La4Sr8Ti11Mn0.5Ga0.5O37.5lusing CuNSZ-based cermets. <i>Electrochimica Acta</i> , 2007 , 52, 7217-7225 Chemical and electrical properties of BaPr0.7Gd0.3O3lJournal of Power Sources, 2007 , 169, 53-58 An efficient ceramic-based anode for solid oxide fuel cells. <i>Journal of Power Sources</i> , 2007 , 171, 663-669 Effects of firing schedule on solubility limits and transport properties of ZrO2lliO2ll2O3	3:3 6.7 8.9 98.9	14 48 20 68
159 158 157 156	Catalytic properties of the proton conductor materials: Sr3CaZr0.5Ta1.5O8.75, BaCe0.9Y0.1O2.95 and Ba3Ca1.18Nb1.82O8.73 for reverse water gas shift. <i>Solid State Ionics</i> , 2007 , 178, 717-722 Improvement of the electrochemical properties of novel solid oxide fuel cell anodes, La0.75Sr0.25Cr0.5Mn0.5O3Iand La4Sr8Ti11Mn0.5Ga0.5O37.5pusing CuNSZ-based cermets. <i>Electrochimica Acta</i> , 2007 , 52, 7217-7225 Chemical and electrical properties of BaPr0.7Gd0.3O3IJ <i>Journal of Power Sources</i> , 2007 , 169, 53-58 An efficient ceramic-based anode for solid oxide fuel cells. <i>Journal of Power Sources</i> , 2007 , 171, 663-669 Effects of firing schedule on solubility limits and transport properties of ZrO2IIiO2N2O3 fluorites. <i>Journal of Solid State Chemistry</i> , 2007 , 180, 2371-2376 Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325IC. <i>Journal of Solid State</i>	3.3 6.7 8.9 98.9	14 48 20 68

(2006-2007)

151	Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3\(\textit{Solid State lonics}\), 178, 101-113	3.3	103
150	SOFCRoll Development at St. Andrews Fuel Cells Ltd <i>Journal of Fuel Cell Science and Technology</i> , 2007 , 4, 138-142		5
149	Doped Nanocrystalline Pt-Promoted Ceria-Zirconia as Anode Catalysts for IT SOFC: Synthesis and Properties. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1023, 1		7
148	Thermodynamic Aspects of the Reaction of Lithium with SnP[sub 2]O[sub 7] Based Positive Electrodes. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A217	3.9	5
147	A Novel Direct Carbon Fuel Cell Concept. Journal of Fuel Cell Science and Technology, 2007, 4, 280-282		35
146	Structural Chemistry and Conductivity of a Solid Solution of YBa1-xSrxCo2O5+\(\textit{\Omega}\) Journal of Physical Chemistry C, 2007 , 111, 19120-19125	3.8	43
145	Combined Neutron Diffraction and Atomistic Modeling Studies of Structure, Defects, and Water Incorporation in Doped Barium Cerate Perovskites. <i>Chemistry of Materials</i> , 2007 , 19, 1239-1248	9.6	18
144	Electronic transport in the novel SOFC anode material La1⊠SrxCr0.5Mn0.5O3⊞I <i>Solid State Ionics</i> , 2006 , 177, 2005-2008	3.3	70
143	New Strategies on SOFC. Materials Research Society Symposia Proceedings, 2006, 972, 1		
142	A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. <i>Journal of Materials Chemistry</i> , 2006 , 16, 1603		319
141	Methane oxidation at redox stable fuel cell electrode La0.75Sr0.25Cr0.5Mn0.5O(3-delta). <i>Journal of Physical Chemistry B</i> , 2006 , 110, 21771-6	3.4	86
140	Microstructural optimisation of materials for SOFC applications using PMMA microspheres. <i>Journal of Materials Chemistry</i> , 2006 , 16, 540		52
139	On the Electrical Properties of Synthetic Manganocolumbite MnNb2O6-II <i>Chemistry of Materials</i> , 2006 , 18, 3827-3834	9.6	20
138	Anodic Performance and Intermediate Temperature Fuel Cell Testing of La0.75Sr0.25Cr0.5Mn0.5O3-lat Lanthanum Gallate Electrolytes. <i>Chemistry of Materials</i> , 2006 , 18, 1001-7	1606	54
137	Phase Transition in Perovskite Oxide La0.75Sr0.25Cr0.5Mn0.5O3-IDbserved by in Situ High-Temperature Neutron Powder Diffraction. <i>Chemistry of Materials</i> , 2006 , 18, 5453-5460	9.6	66
136	Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. <i>Nature</i> , 2006 , 439, 568-71	50.4	329
135	The development of a carbon ir semi fuel cell. <i>Journal of Power Sources</i> , 2006 , 162, 750-756	8.9	82
134	Structural studies on W6+ and Nd3+ substituted La2Mo2O9 materials. <i>Journal of Solid State Chemistry</i> , 2006 , 179, 278-288	3.3	61

133	Mn-substituted titanates as efficient anodes for direct methane SOFCs. <i>Solid State Ionics</i> , 2006 , 177, 1997-2003	3.3	51
132	Investigation of proton conducting BaZr0.9Y0.1O2.95 : BaCe0.9Y0.1O2.95 coreBhell structures. Journal of Materials Chemistry, 2005 , 15, 598-604		61
131	Evidence of three types of short range ordered fluorite structure in the (1 k) Y0.15Zr0.85O1.93		18
130	Formation, structure, and stability of titanate nanotubes and their proton conductivity. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 5439-44	3.4	188
129	Electrical conductivity and redox stability of La2Mo2\(\mathbb{U}\)WxO9 materials. <i>Electrochimica Acta</i> , 2005 , 50, 4385-4395	6.7	86
128	Anomalous variations of unit cell parameters with composition in proton conducting, ACeO3-type perovskite solid solutions. <i>Solid State Ionics</i> , 2005 , 176, 703-712	3.3	24
127	Studies on the Reorganization of Extended Defects with Increasing n in the Perovskite-Based La4Srn&TinO3n+2 Series. <i>Advanced Functional Materials</i> , 2005 , 15, 1000-1008	15.6	54
126	An Efficient Solid Oxide Fuel Cell Based upon Single-Phase Perovskites. <i>Advanced Materials</i> , 2005 , 17, 1734-1737	24	163
125	Phase transition, thermal expansion and electrical properties of BiCu2VO6. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 2927-2933	3.3	9
124	Ionic conductivity of amorphous lithium lanthanum titanate thin film. Solid State Ionics, 2005, 176, 553-5	558,	51
123	Synthesis, sinterability and ionic conductivity of nanocrystalline La2Mo2O9 powders. <i>Solid State Ionics</i> , 2005 , 176, 1807-1816	3.3	47
122	Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3Delectrolytes for fuel cells and other applications. <i>Solid State Ionics</i> , 2005 , 176, 3019-3026	3.3	171
121	Sc-Substituted Oxygen Excess Titanates as Fuel Electrodes for SOFCs. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A1458	3.9	32
120	Batteries and fuel cells 2005 , 339-374		
119	Investigation of the Mixed Conducting Oxide ScYZT as a Potential SOFC Anode Material. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A497	3.9	25
118	Advanced anodes for high-temperature fuel cells. <i>Nature Materials</i> , 2004 , 3, 17-27	27	1203
117	A new alternative representation of impedance data using the derivative of the tangent of the phase angle: Application to the YSZ system and composites. <i>Materials Research Bulletin</i> , 2004 , 39, 1299	-153118	18
116	Solid state NMR studies of phosphate/tin matrix formed on electrochemical insertion into SnP2O7. <i>Solid State Ionics</i> , 2004 , 175, 185-190	3.3	26

(2002-2004)

115	Synthesis and characterization of n=5, 6 members of the La4Srn&TinO3n+2 series with layered structure based upon perovskite. <i>Journal of Solid State Chemistry</i> , 2004 , 177, 2039-2043	3.3	9
114	Discovery and characterization of novel oxide anodes for solid oxide fuel cells. <i>Chemical Record</i> , 2004 , 4, 83-95	6.6	156
113	The Bourner lecture: Power sources and the new energy economy. <i>Journal of Power Sources</i> , 2004 , 136, 203-207	8.9	12
112	Microdomain texture and microstructures of Fe4+-containing CaTi0.4Fe0.6O3\(\textit{J}\) Journal of Solid State Chemistry, 2004 , 177, 3105-3113	3.3	10
111	Synthesis and Characterization of (La[sub 0.75]Sr[sub 0.25])Cr[sub 0.5]Mn[sub 0.5]O[sub 3], a Redox-Stable, Efficient Perovskite Anode for SOFCs. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A252	3.9	336
110	Catalytic Properties of the Perovskite Oxide La0.75Sr0.25Cr0.5Fe0.5O3-In Relation to Its Potential as a Solid Oxide Fuel Cell Anode Material. <i>Chemistry of Materials</i> , 2004 , 16, 4116-4121	9.6	163
109	Structural and Electrical Properties of the Perovskite Oxide Sr2FeNbO6. <i>Chemistry of Materials</i> , 2004 , 16, 2309-2316	9.6	53
108	Electrochemical Studies of Nickel and Copper/Yttria Titania Zirconia Ceria Cermets. <i>Journal of the Electrochemical Society</i> , 2003 , 150, A1030	3.9	8
107	The systems Zr(Nb,Ti)(R)O2‡R=Yb, Cabptimization of mixed conductivity and comparison with results of other systems (R=Y and Gd). <i>Journal of Solid State Chemistry</i> , 2003 , 172, 277-287	3.3	8
106	Water incorporation studies on doped barium cerate perovskites. Solid State Ionics, 2003, 162-163, 83-9	13.3	53
105	A redox-stable efficient anode for solid-oxide fuel cells. <i>Nature Materials</i> , 2003 , 2, 320-3	27	986
104	Ruthenium complexes of 2-(2?-pyridyl)benzimidazole as photosensitizers for dye-sensitized solar cells. <i>Dalton Transactions</i> , 2003 , 685-691	4.3	23
103	Lone-pair containment in closed cavities. The MTe6O13(M = Mn, Ni, Co) family of ternary oxides. <i>Dalton Transactions</i> , 2003 , 2641	4.3	11
102	Studies on the perovskite-based La4Srn-4TinO3n+2 <i>Materials Research Society Symposia Proceedings</i> , 2003 , 801, 204		1
101	Optimization of Mixed Conducting Properties of Y2O3@rO2@iO2 and Sc2O3@2O3@rO2@iO2 Solid Solutions as Potential SOFC Anode Materials. <i>Journal of Solid State Chemistry</i> , 2002 , 165, 12-18	3.3	48
100	Layered Intergrowth Phases Bi4MO8X (X=Cl, M=Ta and X=Br, M=Ta or Nb): Structural and Electrophysical Characterization. <i>Journal of Solid State Chemistry</i> , 2002 , 166, 148-157	3.3	76
99	How amorphous are the tin alloys in li-inserted tin oxides?. <i>Ionics</i> , 2002 , 8, 172-176	2.7	20
98	Characterisation of novel anodes for solid oxide fuel cells based on oxygen-excess perovskite related structures. <i>Ionics</i> , 2002 , 8, 252-255	2.7	6

97	Structural and property investigations of Strontium Galloniobate. Solid State Ionics, 2002, 152-153, 615-	623	11
96	Combined X-ray study of lithium (tin) cobalt oxide matrix negative electrodes for Li-ion batteries. <i>Electrochimica Acta</i> , 2002 , 47, 2885-2892	6.7	46
95	Structural studies of the distorted perovskite proton conductors Sr3Ca1+xNb2⊠O9⊡ <i>Solid State Ionics</i> , 2002 , 152-153, 749-757	3.3	14
94	Structure and properties of nonstoichiometric mixed perovskites A3B?1+xB?2NO9\(\text{ISO}\) Solid State lonics, 2002 , 154-155, 659-667	3.3	13
93	Influence of structure and composition upon performance of tin phosphate based negative electrodes for lithium batteries. <i>Electrochimica Acta</i> , 2002 , 47, 1727-1738	6.7	83
92	Synthesis, Crystal Structure, and Oxide Ion Conductivity in Bi4.6Ca1.1VO10.5. <i>Chemistry of Materials</i> , 2002 , 14, 3700-3704	9.6	5
91	Study on the structural and electrical properties of the double perovskite oxide SrMn0.5Nb0.5O3[] <i>Journal of Materials Chemistry</i> , 2002 , 12, 2356-2360		28
90	StructureBroperty correlations in the new ferroelectric Bi5PbTi3O14Cl and related layered oxyhalide intergrowth phases. <i>Journal of Materials Chemistry</i> , 2002 , 12, 3413-3418		18
89	Electrochemical comparison between SnO2 and Li2SnO3 synthesized at high and low temperatures. <i>Ionics</i> , 2001 , 7, 16-21	2.7	18
88	B site doped strontium titanate as a potential SOFC substrate. <i>Ionics</i> , 2001 , 7, 116-121	2.7	19
87	Investigations into Sr3CaZr0.5Ta1.5O8.75, a novel proton conducting perovskite oxide. <i>Solid State Ionics</i> , 2001 , 145, 307-313	3.3	23
86	Investigation of lead tin fluorides as possible negative electrodes for Li-ion batteries. <i>Journal of Power Sources</i> , 2001 , 97-98, 258-261	8.9	13
85	Electrochemical performance of ball-milled ZnOBnO2 systems as anodes in lithium-ion battery. Journal of Power Sources, 2001 , 97-98, 219-222	8.9	134
84	Novel tin oxide spinel-based anodes for Li-ion batteries. <i>Journal of Power Sources</i> , 2001 , 97-98, 223-225	8.9	98
83	Phase Relations at 1500°C in the Ternary System ZrO2°Gd2O3°FiO2. <i>Journal of Solid State Chemistry</i> , 2001 , 160, 302-306	3.3	24
82	Improved Oxidation of Hydrocarbons with New Electrodes in High Temperature Fuel Cells. <i>Fuel Cells</i> , 2001 , 1, 205-210	2.9	62
81	Qualitative X-ray Diffraction Analysis of Metastable Tetragonal (t?) Zirconia. <i>Journal of the American Ceramic Society</i> , 2001 , 84, 615-618	3.8	46
80	Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process. <i>Materials Research Bulletin</i> , 2001 , 36, 1245-1258	5.1	185

79	Electrochemical Characterization of Ceramic SOFC Anodes. <i>Journal of the Electrochemical Society</i> , 2001 , 148, A923	3.9	52
78	New Mixed Conducting Oxides for SOFC Anodes. ECS Proceedings Volumes, 2001, 2001-16, 738-745		
77	Zero Emission Power Generation Using an all Perovskite Fuel Cell. <i>ECS Proceedings Volumes</i> , 2001 , 2001-16, 224-233		
76	An NMR Investigation of Lithium Occupancy of Different Sites in the Oxide Superconductor LiTi2O4 and Related Compounds. <i>Journal of Solid State Chemistry</i> , 2000 , 152, 397-402	3.3	36
75	Structural studies on the optimisation of fast oxide ion transport. Solid State Ionics, 2000, 136-137, 879	-885	25
74	Hydrogen titanates as potential proton conducting fuel cell electrolytes. <i>Solid State Ionics</i> , 2000 , 136-137, 297-303	3.3	43
73	Synthesis and ionic conduction of apatite-type materials. <i>Ionics</i> , 2000 , 6, 389-396	2.7	22
72	X-ray study of metal oxide based anodes for Li-ion batteries. <i>Ionics</i> , 2000 , 6, 428-433	2.7	2
71	Modulated Fluorite-Type Structure of Materials from the (1園)Y0.5Zr0.5O1.75園Y0.75Nb0.25O1.75 (0瓜園) System. <i>Chemistry of Materials</i> , 2000 , 12, 1729-1737	9.6	35
70	Investigation of Ramsdellite Titanates as Possible New Negative Electrode Materials for Li Batteries. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 4348-4353	3.9	83
69	Li1 + x Fe1 Bx Ti1 + 2x O 4 (0.0 1/2 1/20.33) Based Spinels: Possible Negative Electrode Materials for Future Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 1999 , 146, 3958-3962	3.9	78
68	Effect of alumina additions upon electrical properties of 8 mol.% yttria-stabilised zirconia. <i>Solid State Ionics</i> , 1999 , 121, 209-216	3.3	147
67	Niobium based tetragonal tungsten bronzes as potential anodes for solid oxide fuel cells: synthesis and electrical characterisation. <i>Solid State Ionics</i> , 1999 , 120, 125-134	3.3	48
66	Synthesis and electrical characterisation of the tetragonal tungsten bronze type phases, (Ba/Sr/Ca/La)0 6MxNb1☑O3☑M=Mg, Ni, Mn, Cr, Fe, In, Sn): evaluation as potential anode materials for solid oxide fuel cells. <i>Solid State Ionics</i> , 1999 , 124, 61-72	3.3	51
65	Doped tin oxides as potential lithium ion battery negative electrodes. <i>Ionics</i> , 1999 , 5, 450-454	2.7	38
64	Phase Relations at 1500°C in the Ternary System ZrO2°C 203°C	3.3	50
63	Structural Anomalies of 1223 Hg(Tl) B allallul Superconductors in the Temperature Range 100B00 K. <i>Journal of Superconductivity and Novel Magnetism</i> , 1998 , 11, 471-479		8
62	Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. <i>Journal of Materials Science</i> , 1998 , 33, 4297-4305	4.3	109

61	High-Temperature Powder Neutron Diffraction Study of the Oxide Ion Conductor La0.9Sr0.1Ga0.8Mg0.2O2.85. <i>Journal of Solid State Chemistry</i> , 1998 , 139, 135-143	3.3	110
60	A New Solid Solution Series Linking LiTi2O4and Li2Ti3O7Ramsdellites: A Combined X-Ray and Neutron Study. <i>Journal of Solid State Chemistry</i> , 1998 , 141, 365-372	3.3	11
59	Synthesis and electrical characterisation of different doped magnesium titanates. <i>Ionics</i> , 1998 , 4, 175-	I8 <u>Ø</u> .7	2
58	Electrical characterization of highly Titania doped YSZ. <i>Ionics</i> , 1998 , 4, 215-219	2.7	32
57	Synthesis and crystal structure of the distorted perovskite Sr0.97NbO3 determined by high resolution powder neutron diffraction. <i>Journal of Materials Chemistry</i> , 1998 , 8, 1033-1038		28
56	Yttrium and lead nuclear magnetic resonance investigation of a 1212 superconductor,. <i>Journal of Physics Condensed Matter</i> , 1998 , 10, 2539-2550	1.8	2
55	Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells. <i>Journal of Materials Chemistry</i> , 1997 , 7, 2495-2498		143
54	High oxide ion conductivity in non-stoichiometric pyrochlores and fluorites in the ternary system ZrO2 - Gd2O3 - TiO2. <i>Ionics</i> , 1997 , 3, 30-35	2.7	7
53	Transformation of LiTi2O4from Spinel to Ramsdellite on Heating. <i>Journal of Solid State Chemistry</i> , 1997 , 132, 382-388	3.3	24
52	Synthesis and electrical characterisation of the perovskite niobate-titanates, Sr1🛮/2Ti1🔻NbxO3🗸 <i>lonics</i> , 1996 , 2, 213-216	2.7	30
51	Phase transitions and structural instability in HTSC compounds and related phases. <i>European Physical Journal D</i> , 1996 , 46, 1417-1418		3
50	Domain wall relaxation frequency and magnetocrystalline anisotropy constant in Ni?Zn ferrites. <i>Journal of Magnetism and Magnetic Materials</i> , 1996 , 160, 386-387	2.8	13
49	Syntheses and properties of the lead 1,3-dithiole-2-thione-4,5-dithiolate (dmit) compounds: $Ph2Pb(dmit)$, [Q] $[Ph2Pb(dmit)$ I] $[Q = NEt4$ or 1,4-Me2-pyridinium], $(Ph3Pb)2$ (dmit) and $Pb(dmit)$. $Polyhedron$, 1996, 15, 1807-1815	2.7	13
48	Optimization of superconducting critical temperatures by control of cation and anion stoichiometry in Bi2Sr2CaCu2OEbased solid solutions. <i>Journal of Materials Science</i> , 1995 , 30, 2743-2746	4.3	
47	Oxide ion transport in highly defective cubic stabilized zirconias. <i>Ionics</i> , 1995 , 1, 279-285	2.7	13
46	Microstructural investigations of reduced magnesium titanate spinels which have shown anomalous resistance behaviour. <i>Materials Research Bulletin</i> , 1995 , 30, 1513-1524	5.1	
45	The AC Impedance Response of the Physical Interface Between Yttria-Stabilized Zirconia and YBa2Cu3 O 7 lk. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 2650-2654	3.9	48
44	Impedance Spectroscopy of Ferromagnetic Materials. <i>Materials Research Society Symposia</i> Proceedings, 1995 , 411, 39		2

43	Effects of nanocrystallization upon the soft magnetic properties of Co-based amorphous alloys. <i>Journal of Applied Physics</i> , 1994 , 75, 6940-6942	2.5	49	
42	Production of tartrate and glycolate from the electrochemical reduction of glyoxylate. <i>Journal of Applied Electrochemistry</i> , 1994 , 24, 271	2.6	2	
41	Rationalisation of oxygen non-stoichiometry determination in cuprates. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 403-404	1.3		
40	A study of (Y1½Cax)Ba2Cu306+Iby 89Y NMR. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 1585-1586	1.3	2	
39	Reduced magnesium titanate electrodes for solid oxide fuel cells. <i>Solid State Ionics</i> , 1994 , 72, 235-239	3.3	11	
38	Sintering of a plasma derived zirconia powder for solid oxide fuel cell electrolytes. <i>Solid State Ionics</i> , 1994 , 72, 265-270	3.3	5	
37	Polarization behavior of yttrium barium copper oxide electrodes on yttria-stabilized zirconia electrolytes. <i>Materials Research Bulletin</i> , 1994 , 29, 1175-1182	5.1	11	
36	Equation of motion of domain walls and equivalent circuits in soft ferromagnetic materials. <i>Journal of Applied Physics</i> , 1994 , 75, 7000-7002	2.5	43	
35	Domain wall dynamics and short-range order in ferromagnetic amorphous ribbons. <i>Journal of Non-Crystalline Solids</i> , 1993 , 156-158, 315-318	3.9	5	
34	Phase Formation and Electronic Transport Properties in the Corundum (Ti2O3)-Ilmenite (MgTiO3) System. <i>Journal of Solid State Chemistry</i> , 1993 , 103, 30-37	3.3	9	
33	Possible superconductivity in the Mg-Ti-O system. <i>Applied Superconductivity</i> , 1993 , 1, 511-518		5	
32	Superconductivity in La-doped Bi 2201 <i>Physica C: Superconductivity and Its Applications</i> , 1993 , 205, 323-328	1.3	27	
31	Critical current behaviour in reduced magnesium titanate spinel showing zero resistance. <i>Physica C: Superconductivity and Its Applications</i> , 1993 , 212, 95-100	1.3	4	
30	Indexed Powder Data for Incommensurate Bi2Sr2Ca2Cu3Oz. <i>Powder Diffraction</i> , 1992 , 7, 49-51	1.8	9	
29	Effects of thermal annealing on the magnetization dynamics of vitrovac amorphous ribbons. <i>Journal of Applied Physics</i> , 1992 , 72, 1486-1489	2.5	42	
28	Stoichiometry and kinetics of formation of Bi2Sr2CaCu2OBolid solutions. <i>Journal of Materials Chemistry</i> , 1992 , 2, 579		19	
27	Main group metal 1,3-dithiole-2-thione-4,5-dithiolato (DMIT) compounds?III. Synthesis of tetrabutylammonium bis(1,3-dithiole-2-thione-4,5-dithiolato)dihalostannates. Crystal structure of [Bu4N]2[I2Sn(DMIT)2]. <i>Polyhedron</i> , 1992 , 11, 2223-2229	2.7	15	
26	Main group metal 1,3-dithiole-2-thione-4,5-dithiolate (DMIT) compounds. <i>Journal of Organometallic Chemistry</i> , 1992 , 436, 23-33	2.3	20	

25	The equivalent resistance term in magnetic impedence spectroscopy. <i>Journal of Magnetism and Magnetic Materials</i> , 1992 , 104-107, 395-396	2.8	1
24	Reversible and irreversible domain wall movement in Metglas amorphous ribbons. <i>Materials Science & Microstructure and Processing</i> , 1991 , 133, 140-142	5.3	12
23	Organotin-DMIT complexes: crystal structure of [Bu4N][Me2SnCl(DMIT)]. <i>Journal of Organometallic Chemistry</i> , 1991 , 414, C5-C8	2.3	22
22	Characterization of Ca-doped Bi2 +xSr2 ⊠CuOz. <i>Journal of Materials Chemistry</i> , 1991 , 1, 147-148		8
21	Electrical Properties of Polycrystalline Nickel Zinc Ferrites. <i>Journal of the American Ceramic Society</i> , 1990 , 73, 729-732	3.8	66
20	Absence of critical temperature plateaux in quenched samples of YBa2Cu3Ox. <i>Physica C:</i> Superconductivity and Its Applications, 1990 , 168, 346-350	1.3	36
19	Solar energy fixation of carbon dioxide via cadmium sulphide and other semiconductor photocatalysts. <i>Solar Energy</i> , 1990 , 45, 27-33	6.8	33
18	Electroceramics: Characterization by Impedance Spectroscopy. <i>Advanced Materials</i> , 1990 , 2, 132-138	24	1700
17	Nature and extent of oxygen nonstoichiometry in Bi2Sr2CaCu2O8+\(\mathbb{I}\) Journal of Solid State Chemistry, 1990 , 87, 29-34	3.3	44
16	Domain wall relaxation in amorphous ribbons. <i>Journal of Applied Physics</i> , 1990 , 67, 5589-5591	2.5	25
15	Characterisation of Incommensurate Bi2+xSr2-xCuOzby X-Ray Powder Diffraction and Oxygen Content Determinations. <i>Japanese Journal of Applied Physics</i> , 1990 , 29, L2002-L2005	1.4	25
14	CRYSTALLINE LITHIUM ION CONDUCTORS 1989 , 201-222		20
13	Oxygen stoichiometry-Tccorrelations in Bi2Sr2CaCu2O8+x. <i>Superconductor Science and Technology</i> , 1989 , 2, 181-184	3.1	37
12	Incommensurate structure and X-ray powder diffraction data for Bi2Sr2CaCu2O8+x. <i>Superconductor Science and Technology</i> , 1989 , 2, 140-144	3.1	16
11	The cyclic voltammetry of some sulphonated transition metal phthalocyanines in dimethylsulphoxide and in water. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1989 , 271, 161-172		39
10	The voltammetry of mixed solutions of carbon dioxide and metal phthalocyanines in DMSO. <i>Journal of Electroanalytical Chemistry and Interfacial Electrochemistry</i> , 1989 , 266, 125-131		19
9	Ca12Al14O33 🖪 possible high-temperature moisture sensor. <i>Journal of Applied Electrochemistry</i> , 1989 , 19, 410-412	2.6	19
8	Sodium phosphate-based solid electrolytes. <i>Solid State Ionics</i> , 1988 , 28-30, 214-219	3.3	10

LIST OF PUBLICATIONS

7	Solid electrolytes based onNa3PO4:M4+ (M =Zr, Hf, Ti, Sn, Ce, Th). <i>Journal of Solid State Chemistry</i> , 1988 , 74, 385-392	.3	13
6	Oxide ion conductivity in Ca12Al14O33. <i>Materials Research Bulletin</i> , 1988 , 23, 1033-1038	.1	28
5	Formation of two-carbon acids from carbon dioxide by photoreduction on cadmium sulphide. Journal of the Chemical Society Chemical Communications, 1988, 1123		61
4	Orthorhombic-tetragonal transition in YBa2Cu3Ox. Superconductor Science and Technology, 1988 , 1, 169 ₃ 1	172	27
3	Sodium ion-conducting solid electrolytes in the system Na3PO4?Na2SO4. <i>Journal of Solid State Chemistry</i> , 1987 , 69, 126-134	.3	14
2	Solid electrolytes based on Na3PO4 doped with S, Se, Mo, W. <i>Materials Research Bulletin</i> , 1987 , 22, 1047 5 1	1054	13
1	Computational Screening of Anode Coatings for Garnet-type Solid-State Batteries. <i>Batteries and Supercaps</i> .	:.6	1