List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6412315/publications.pdf Version: 2024-02-01

WENDEL ALVES

#	Article	IF	CITATIONS
1	Silk Fibroin/Poly(vinyl Alcohol) Microneedles as Carriers for the Delivery of Singlet Oxygen Photosensitizers. ACS Biomaterials Science and Engineering, 2022, 8, 128-139.	2.6	17
2	Organic Electrochemical Transistors in Bioanalytical Chemistry. , 2022, , 305-312.		0
3	<i>In Situ</i> Nanocoating on Porous Pyrolyzed Paper Enables Antibiofouling and Sensitive Electrochemical Analyses in Biological Fluids. ACS Applied Materials & Interfaces, 2022, 14, 2522-2533.	4.0	20
4	Interfacial Self-Assembly of Silk Fibroin Polypeptides and α-NiCo(OH) ₂ Nanocrystals with Tunable Energy Storage Applications. ACS Applied Electronic Materials, 2022, 4, 1214-1224.	2.0	0
5	Nanostructure Formation and Cell Spheroid Morphogenesis of a Peptide Supramolecular Hydrogel. Langmuir, 2022, 38, 3434-3445.	1.6	9
6	Peptide-Tetrapyrrole Supramolecular Self-Assemblies: State of the Art. Molecules, 2021, 26, 693.	1.7	12
7	2D Layered Dipeptide Crystals for Piezoelectric Applications. Advanced Functional Materials, 2021, 31, 2102524.	7.8	21
8	Structure optimization of lipopeptide assemblies for aldol reactions in an aqueous medium. Physical Chemistry Chemical Physics, 2021, 23, 10953-10963.	1.3	2
9	2D Layered Dipeptide Crystals for Piezoelectric Applications (Adv. Funct. Mater. 43/2021). Advanced Functional Materials, 2021, 31, 2170320.	7.8	2
10	Amyloid Formation by Short Peptides in the Presence of Dipalmitoylphosphatidylcholine Membranes. Langmuir, 2020, 36, 14793-14801.	1.6	10
11	Sono-Assembly of the [Arg-Phe]4 Octapeptide into Biofunctional Nanoparticles. Nanomaterials, 2020, 10, 1772.	1.9	7
12	Amyloid Peptide Mixtures: Self-Assembly, Hydrogelation, Nematic Ordering, and Catalysts in Aldol Reactions. Langmuir, 2020, 36, 2767-2774.	1.6	19
13	Self-Assembly, Nematic Phase Formation, and Organocatalytic Behavior of a Proline-Functionalized Lipopeptide. ACS Applied Materials & Interfaces, 2020, 12, 13671-13679.	4.0	14
14	Amphipathic design dictates self-assembly, cytotoxicity and cell uptake of arginine-rich surfactant-like peptides. Journal of Materials Chemistry B, 2020, 8, 2495-2507.	2.9	30
15	Preparation and characterization of a new composite conductive polyethersulfone membrane using polyaniline (PANI) and reduced graphene oxide (rGO). Chemical Engineering Journal, 2020, 390, 124612.	6.6	67
16	The Role of Amylogenic Fiber Aggregation on the Elasticity of a Lipid Membrane. ACS Applied Bio Materials, 2020, 3, 815-822.	2.3	4
17	Tailoring a Zinc Oxide Nanorod Surface by Adding an Earthâ€Abundant Cocatalyst for Induced Sunlight Water Oxidation. ChemPhysChem, 2020, 21, 476-483.	1.0	4
18	Self-assembled gold nanoparticles and amphiphile peptides: a colorimetric probe for copper(ii) ion detection. Dalton Transactions, 2020, 49, 16226-16237.	1.6	5

WENDEL ALVES

#	Article	IF	CITATIONS
19	Polymorphism of asymmetric catalysts based on amphiphilic lipopeptides in solution. Soft Matter, 2020, 16, 4615-4624.	1.2	6
20	Self-assembly and intracellular delivery of DNA by a truncated fragment derived from the <i>Trojan</i> peptide <i>Penetratin</i> . Soft Matter, 2020, 16, 4746-4755.	1.2	17
21	Crotamine Cell-Penetrating Nanocarriers: Cancer-Targeting and Potential Biotechnological and/or Medical Applications. Methods in Molecular Biology, 2020, 2118, 61-89.	0.4	9
22	Influence of Preparation Methodology on the Photocatalytic Activity of Nitrogen Doped Titanate and TiO ₂ Nanotubes. Journal of Nanoscience and Nanotechnology, 2020, 20, 5390-5401.	0.9	5
23	Self-Assembly of a Catalytically Active Lipopeptide and Its Incorporation into Cubosomes. ACS Applied Bio Materials, 2019, 2, 3639-3647.	2.3	15
24	Amyloidogenic model peptides as catalysts for stereoselective aldol reactions. Catalysis Science and Technology, 2019, 9, 4304-4313.	2.1	19
25	Peptide-Based Assemblies on Electrospun Polyamide-6/Chitosan Nanofibers for Detecting Visceral Leishmaniasis Antibodies. ACS Applied Electronic Materials, 2019, 1, 2086-2095.	2.0	20
26	β <i>â€</i> sheet assembly in amyloidogenic glutamic acid nanostructures: Insights from Xâ€ray scattering and infrared nanospectroscopy. Journal of Peptide Science, 2019, 25, e3170.	0.8	11
27	Hierarchical Selfâ€Assembly of Peptides and its Applications in Bionanotechnology. Macromolecular Chemistry and Physics, 2019, 220, 1900085.	1.1	37
28	Enhanced piezoresponse and nonlinear optical properties of fluorinated self-assembled peptide nanotubes. AIP Advances, 2019, 9, 115202.	0.6	7
29	Design and characterization of crotamine-functionalized gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2018, 163, 1-8.	2.5	14
30	Multilamellar-to-Unilamellar Transition Induced by Diphenylalanine in Lipid Vesicles. Langmuir, 2018, 34, 2171-2179.	1.6	13
31	Silk fibroin hydrogels for potential applications in photodynamic therapy. Biopolymers, 2018, 110, e23245.	1.2	16
32	Poly-L-Arginine-Modified Boron-Doped Diamond and Glassy Carbon Electrodes for Terbutaline Sulfate Detection. Journal of Nanoscience and Nanotechnology, 2018, 18, 4551-4558.	0.9	8
33	Hybrid Conjugates Formed between Gold Nanoparticles and an Amyloidogenic Diphenylalanine ysteine Peptide. ChemistrySelect, 2018, 3, 6756-6765.	0.7	4
34	Sequence length dependence in arginine/phenylalanine oligopeptides: Implications for self-assembly and cytotoxicity. Biophysical Chemistry, 2018, 233, 1-12.	1.5	29
35	Shear Alignment of Bola-Amphiphilic Arginine-Coated Peptide Nanotubes. Biomacromolecules, 2017, 18, 141-149.	2.6	42
36	Chiral organocatalysts based on lipopeptide micelles for aldol reactions in water. Physical Chemistry Chemical Physics, 2017, 19, 1181-1189.	1.3	34

WENDEL ALVES

#	Article	IF	CITATIONS
37	Probing nonlinear optical coefficients in self-assembled peptide nanotubes. Physical Chemistry Chemical Physics, 2017, 19, 3084-3093.	1.3	13
38	Polycaprolactone–Polyaniline Blend: Effects of the Addition of Cysteine on the Structural and Molecular Properties. Journal of Physical Chemistry C, 2017, 121, 863-877.	1.5	14
39	Conjugation with L,L-diphenylalanine Self-Assemblies Enhances In Vitro Antitumor Activity of Phthalocyanine Photosensitizer. Scientific Reports, 2017, 7, 13166.	1.6	12
40	SERS active self-assembled diphenylalanine micro/nanostructures: A combined experimental and theoretical investigation. Journal of Chemical Physics, 2017, 147, 084703.	1.2	10
41	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mrow><mml:mo> [</mml:mo> <mml mathvariant="normal">C<mml:msub><mml:mi mathvariant="normal">u<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:msub><mml:msub><mml:mo> (mathvariant="normal">C<mml:mo> (mathvariant="normal">C</mml:mo> (mathvariant="normal">C</mml:mo> (ml:mo> (ml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:msub></mml:msub></mml </mml:mrow></mml:mrow>	:mi (<td>><mml:mi>a</mml:mi></td>	> <mml:mi>a</mml:mi>
42	Dye Degradation Mechanisms Using Nitrogen Doped and Copper(II) Phthalocyanine Tetracarboxylate Sensitized Titanate and TiO ₂ Nanotubes. Journal of Physical Chemistry C, 2016, 120, 11561-11571.	1.5	20
43	Structural behaviour and gene delivery in complexes formed between DNA and arginine-containing peptide amphiphiles. Soft Matter, 2016, 12, 9158-9169.	1.2	23
44	Water-driven stabilization of diphenylalanine nanotube structures. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	40
45	Polycaprolactone fibers with self-assembled peptide micro/nanotubes: a practical route towards enhanced mechanical strength and drug delivery applications. Journal of Materials Chemistry B, 2016, 4, 1405-1413.	2.9	33
46	Semiconducting polymer–dipeptide nanostructures by ultrasonically-assisted self-assembling. RSC Advances, 2016, 6, 32171-32175.	1.7	9
47	Multifunctional biosensors based on peptide–polyelectrolyte conjugates. Physical Chemistry Chemical Physics, 2016, 18, 3223-3233.	1.3	30
48	Multihierarchical electrodes based on titanate nanotubes and zinc oxide nanorods for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 944-952.	5.2	19
49	Selfâ€Assembled Peptide–Polyfluorene Nanocomposites for Biodegradable Organic Electronics. Advanced Materials Interfaces, 2015, 2, 1500265.	1.9	35
50	Self-Assembly of Peptide Nanostructures onto an Electrode Surface for Nonenzymatic Oxygen Sensing. Journal of Physical Chemistry C, 2015, 119, 1038-1046.	1.5	22
51	Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile. Chemical Communications, 2015, 51, 11634-11637.	2.2	44
52	Relaxation dynamics of deeply supercooled confined water in <scp>I,I</scp> -diphenylalanine micro/nanotubes. Physical Chemistry Chemical Physics, 2015, 17, 32126-32131.	1.3	7
53	Self-Assembly of a Designed Alternating Arginine/Phenylalanine Oligopeptide. Langmuir, 2015, 31, 4513-4523.	1.6	46
54	Self-Assembled Arginine-Capped Peptide Bolaamphiphile Nanosheets for Cell Culture and Controlled Wettability Surfaces. Biomacromolecules, 2015, 16, 3180-3190.	2.6	49

#	Article	IF	CITATIONS
55	Elucidating the crystal structure of the antimalarial drug (±)-mefloquine hydrochloride: a tetragonal hydrated species. Journal of Applied Crystallography, 2014, 47, 1380-1386.	1.9	2
56	The role of water and structure on the generation of reactive oxygen species in peptide/hypericin complexes. Journal of Peptide Science, 2014, 20, 554-562.	0.8	22
57	Bioinspired Peptide Nanostructures for Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2014, 6, 21408-21415.	4.0	35
58	A Nonenzymatic Biosensor Based on Gold Electrodes Modified with Peptide Self-Assemblies for Detecting Ammonia and Urea Oxidation. Langmuir, 2014, 30, 11464-11473.	1.6	56
59	Visible-light photocatalytic activity of NH 4 NO 3 ion-exchanged nitrogen-doped titanate and TiO 2 nanotubes. Journal of Molecular Catalysis A, 2014, 394, 48-56.	4.8	21
60	<scp>l</scp> -Diphenylalanine Microtubes As a Potential Drug-Delivery System: Characterization, Release Kinetics, and Cytotoxicity. Langmuir, 2013, 29, 10205-10212.	1.6	142
61	The effects of water molecules on the electronic and structural properties of peptide nanotubes. Physical Chemistry Chemical Physics, 2013, 15, 7555.	1.3	38
62	Structural and Photophysical Properties of Peptide Micro/Nanotubes Functionalized with Hypericin. Journal of Physical Chemistry B, 2013, 117, 2605-2614.	1.2	35
63	Self-Assembly of Arg–Phe Nanostructures via the Solid–Vapor Phase Method. Journal of Physical Chemistry B, 2013, 117, 733-740.	1.2	27
64	Spectroelectrochemical Study of the Hybrid between Vanadium Oxide and Carboxybenzylviologen for Application in Electrochromic Electrodes. ECS Transactions, 2012, 43, 363-369.	0.3	5
65	Micro- and nano-sized peptidic assemblies prepared via solid-vapor approach: Morphological and spectroscopic aspects. Materials Chemistry and Physics, 2012, 137, 628-636.	2.0	16
66	Electrochromic Properties of a Metallo-supramolecular Polymer Derived from Tetra(2-pyridyl-1,4-pyrazine) Ligands Integrated in Thin Multilayer Films. Langmuir, 2012, 28, 3332-3337.	1.6	8
67	Análise vibracional de compostos de coordenação de niquel(II): uma abordagem ao ensino dos grupos pontuais. Quimica Nova, 2012, 35, 1264-1270.	0.3	2
68	Magnetic, structural, and transport properties at very high temperature in manganites. Journal of Magnetism and Magnetic Materials, 2012, 324, 2011-2018.	1.0	7
69	Influence of pH and Pyrenyl on the Structural and Morphological Control of Peptide Nanotubes. Journal of Physical Chemistry C, 2011, 115, 7906-7913.	1.5	23
70	Structural, electronic, and magnetic entropy contributions of the orbital order–disorder transition in LaMnO ₃ . Phase Transitions, 2011, 84, 284-290.	0.6	3
71	Quenching of Photoactivity in Phthalocyanine Copper(II) -Titanate Nanotube Hybrid Systems. Journal of Physical Chemistry C, 2011, 115, 12082-12089.	1.5	11
72	Electrochemical Determination of Dopamine Based on Self-Assembled Peptide Nanostructure. ACS Applied Materials & Interfaces, 2011, 3, 4437-4443.	4.0	56

#	Article	IF	CITATIONS
73	Pt–Ru–TiO2 photoelectrocatalysts for methanol oxidation. Journal of Power Sources, 2011, 196, 872-876.	4.0	60
74	Synthesis, spectroscopic characterization and radiosensitizing properties of acetato-bridged copper(II) complexes with 5-nitroimidazole drugs. Inorganica Chimica Acta, 2011, 367, 85-92.	1.2	28
75	Atividade eletrocatalÃtica de sistemas biomiméticos da enzima catalase. Quimica Nova, 2011, 34, 1588-1594.	0.3	0
76	Approaches for multicopper oxidases in the design of electrochemical sensors for analytical applications. Electrochimica Acta, 2010, 55, 5223-5229.	2.6	14
77	Spatial organization of peptide nanotubes for electrochemical devices. Journal of Materials Science, 2010, 45, 5101-5108.	1.7	47
78	Chemical modification of a nanocrystalline TiO2 film for efficient electric connection of glucose oxidase. Journal of Colloid and Interface Science, 2010, 346, 442-447.	5.0	16
79	Dinuclear Azide-Bridged Copper(II) Complex as Building Block for the Assembly of a 2D-Supramolecular Array. Science of Advanced Materials, 2010, 2, 173-183.	0.1	2
80	A Chloroâ€Bridged Linear Chain Imine opper(II) Complex and Its Application as an Enzymeâ€Free Amperometric Biosensor for Hydrogen Peroxide. European Journal of Inorganic Chemistry, 2009, 2009, 2219-2228.	1.0	22
81	Characterization of anodic silicon oxide films grown in room temperature ionic liquids. Electrochimica Acta, 2008, 53, 7396-7402.	2.6	4
82	Immobilization of Catalysts of Biological Interest on Porous Oxidized Silicon Surfaces. Journal of Nanoscience and Nanotechnology, 2008, 8, 3570-3576.	0.9	7
83	Spectroscopic characterization and investigation of the dynamic of charge compensation process of supramolecular films derived from tetra-2-pyridyl-1,4-pyrazine ligand. Journal of the Brazilian Chemical Society, 2008, 19, 651-659.	0.6	10
84	A new dinuclear heme-copper complex derived from functionalized protoporphyrin IX. Dalton Transactions, 2007, , 2197.	1.6	16
85	Evaluation of Hexaniobate Nanoscrolls as Support for Immobilization of a Copper Complex Catalyst. Inorganic Chemistry, 2006, 45, 6214-6221.	1.9	21
86	Design of molecular wires based on supramolecular structures for application in glucose biosensors. Biosensors and Bioelectronics, 2006, 22, 298-305.	5.3	28
87	Infinite zig-zag and cyclic-tetranuclear isomeric imidazolate-bridged polynuclear copper(II) complexes: Magnetic properties, catalytic activity and electrospray mass and tandem mass spectrometry characterization. Inorganica Chimica Acta, 2005, 358, 3581-3591.	1.2	26
88	Equilibria and catalytic properties of a chloro-bridged Diimine copper(II) complex in the N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) oxidation. Journal of the Brazilian Chemical Society, 2004, 15, 872-883.	0.6	11
89	New Copper(II) Complexes Containing 2-Furoic Hydrazide and 5-Nitro-2-Furoic Hydrazide Ligands: Synthesis, Thermal, Magnetic and Spectroscopic Characterization. Transition Metal Chemistry, 2004, 29, 382-387.	0.7	11
90	Molecular structure and intra- and intermolecular magnetic interactions in chloro-bridged copper(II) dimers. Inorganica Chimica Acta, 2004, 357, 2269-2278.	1.2	88

#	Article	IF	CITATIONS
91	The adsorption of 2,2′:6′,2″-terpyridine, 4′-(5-mercaptopentyl)-2,2′:6′,2″-terpyridinyl, and perc silver and copper surfaces monitored by SERS. Polyhedron, 2003, 22, 1673-1682.	hlorate on	34
92	Diimine copper(II) complexes as building blocks for microporous catalytic materials. Inorganic Chemistry Communication, 2003, 6, 294-299.	1.8	35
93	Comparative kinetic studies on tyrosinase-like catalytic activity of dinuclear imidazole-containing copper(II) complexes. Journal of Molecular Catalysis A, 2003, 198, 63-75.	4.8	29
94	Synthesis of Furan Derivatives Condensed with Carbohydrates. Molecules, 2001, 6, 728-735.	1.7	4
95	Factorial design analysis of the catalytic activity of di-imine copper(II) complexes in the decomposition of hydrogen peroxide. International Journal of Chemical Kinetics, 2001, 33, 472-479.	1.0	8
96	Equilibria and tyrosinase activity of a dinuclear and its analogous tetranuclear imidazolate-bridged copper(II) complexes. Inorganica Chimica Acta, 2001, 321, 11-21.	1.2	29
97	Mimics of copper proteins: structural and functional aspects. Anais Da Academia Brasileira De Ciencias, 2000, 72, 51-58.	0.3	7
98	Nanostructured Antigen-Responsive Hydrogels Based on Peptides for Leishmaniasis Detection. Journal of the Brazilian Chemical Society, 0, , .	0.6	7
99	Hybrid Hydrogels Based on Polyethylene Glycol Bioconjugated with Silylated‑Amyloidogenic Peptides. Journal of the Brazilian Chemical Society, 0, , .	0.6	1