
Ho-Jeong Chae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6412276/publications.pdf Version: 2024-02-01

HO-JEONG CHAE

#	Article	IF	CITATIONS
1	Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions. Applied Catalysis A: General, 2009, 369, 60-66.	4.3	115
2	Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported ordered mesoporous silica catalysts. Applied Catalysis B: Environmental, 2014, 150-151, 596-604.	20.2	87
3	Catalytic production of hydrogen through aqueous-phase reforming over platinum/ordered mesoporous carbon catalysts. Green Chemistry, 2011, 13, 1718.	9.0	71
4	Oligomerization of light olefins over ZSM-5 and beta zeolite catalysts by modifying textural properties. Applied Catalysis A: General, 2018, 553, 15-23.	4.3	56
5	Ru-supported lanthania-ceria composite as an efficient catalyst for COx-free H2 production from ammonia decomposition. Applied Catalysis B: Environmental, 2021, 285, 119831.	20.2	54
6	A review on the recent developments of ruthenium and nickel catalysts for COx-free H2 generation by ammonia decomposition. Korean Journal of Chemical Engineering, 2021, 38, 1087-1103.	2.7	46
7	Boosting low temperature De-NOx performance and SO2 resistance over Ce-doped two dimensional Mn-Cr layered double oxide catalyst. Chemical Engineering Journal, 2022, 434, 134676.	12.7	39
8	Structural and physicochemical effects of MFI zeolite nanosheets for the selective synthesis of propylene from methanol. Microporous and Mesoporous Materials, 2016, 222, 1-8.	4.4	36
9	Butadiene production from bioethanol and acetaldehyde over tantalum oxide-supported spherical silica catalysts for circulating fluidized bed. Chemical Engineering Journal, 2015, 278, 217-223.	12.7	35
10	Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel. Korean Journal of Chemical Engineering, 2013, 30, 509-517.	2.7	29
11	An integrated process for production of jet-fuel range olefins from ethylene using Ni-AlSBA-15 and Amberlyst-35 catalysts. Applied Catalysis A: General, 2017, 530, 48-55.	4.3	29
12	Ni/SIRAL-30 as a heterogeneous catalyst for ethylene oligomerization. Applied Catalysis A: General, 2018, 562, 87-93.	4.3	29
13	Facile one-pot synthesis of Ni-based catalysts by cation-anion double hydrolysis method as highly active Ru-free catalysts for green H2 production via NH3 decomposition. Applied Catalysis B: Environmental, 2022, 307, 121167.	20.2	29
14	Catalytic degradation of polyethylene over SBA-16. Korean Journal of Chemical Engineering, 2010, 27, 1446-1451.	2.7	28
15	Physicochemical Characteristics of SAPO-34 Molecular Sieves Synthesized with Mixed Templates as MTO Catalysts. Journal of Nanoscience and Nanotechnology, 2010, 10, 195-202.	0.9	26
16	Effect of Metal Oxide–Support Interactions on Ethylene Oligomerization over Nickel Oxide/Silica–Alumina Catalysts. Catalysts, 2019, 9, 933.	3.5	26
17	Sulfated Tin Oxide as Highly Selective Catalyst for the Chlorination of Methane to Methyl Chloride. ACS Catalysis, 2019, 9, 9398-9410.	11.2	22
18	One-pot cascade ethylene oligomerization using Ni/Siral-30 and H-ZSM-5 catalysts. Applied Catalysis A: General. 2019. 572. 226-231.	4.3	18

HO-JEONG CHAE

#	Article	IF	CITATIONS
19	Synthesis and characterization of nanocrystalline TiAPSO-34 catalysts and their performance in the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 2018, 259, 60-66.	4.4	17
20	Dehydration of Bioethanol to Ethylene over H-ZSM-5 Catalysts: A Scale-Up Study. Catalysts, 2019, 9, 186.	3.5	13
21	Catalytic degradation of high-density polyethylene over SAPO-34 synthesized with various templates. Korean Journal of Chemical Engineering, 2010, 27, 1768-1772.	2.7	12
22	Oligomerization of 1-hexene over designed SBA-15 acid catalysts. Journal of Industrial and Engineering Chemistry, 2018, 65, 397-405.	5.8	11
23	Control of methane chlorination with molecular chlorine gas using zeolite catalysts: Effects of Si/Al ratio and framework type. Catalysis Today, 2020, 352, 111-117.	4.4	11
24	Comparative study of CHA- and AEI-type zeolytic catalysts for the conversion of chloromethane into light olefins. Korean Journal of Chemical Engineering, 2018, 35, 1433-1440.	2.7	9
25	Highly Selective Catalytic Dechlorination of Dichloromethane to Chloromethane over Alâ^'Ti Mixed Oxide Catalysts. ChemCatChem, 2020, 12, 5098-5108.	3.7	8
26	The application of Py-GC/MS for the catalytic upgrading of oil separated from summer food waste leachate. Research on Chemical Intermediates, 2011, 37, 1283-1291.	2.7	6
27	CH4 Chlorination with Cl2 using zeolites having different surface polarities: Catalysis descriptors explaining the electrophilic pathway. Journal of CO2 Utilization, 2020, 42, 101318.	6.8	4
28	Kinetic Modeling of Direct Methane Chlorination in Both Free-Radical and Catalytic Reactions. Industrial & Engineering Chemistry Research, 2022, 61, 2434-2442.	3.7	2