Milan N Stojanović

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/641150/publications.pdf Version: 2024-02-01

ΜΠΑΝ Ν STΟΙΑΝΟΛΙΆΤ

#	Article	IF	CITATIONS
1	Aptamer-Based Folding Fluorescent Sensor for Cocaine. Journal of the American Chemical Society, 2001, 123, 4928-4931.	13.7	676
2	A deoxyribozyme-based molecular automaton. Nature Biotechnology, 2003, 21, 1069-1074.	17.5	627
3	Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science, 2018, 362, 319-324.	12.6	570
4	Deoxyribozyme-Based Logic Gates. Journal of the American Chemical Society, 2002, 124, 3555-3561.	13.7	457
5	Fluorescent Sensors Based on Aptamer Self-Assembly. Journal of the American Chemical Society, 2000, 122, 11547-11548.	13.7	411
6	Aptamer-Based Colorimetric Probe for Cocaine. Journal of the American Chemical Society, 2002, 124, 9678-9679.	13.7	341
7	Modular Aptameric Sensors. Journal of the American Chemical Society, 2004, 126, 9266-9270.	13.7	301
8	Deoxyribozyme-Based Half-Adder. Journal of the American Chemical Society, 2003, 125, 6673-6676.	13.7	249
9	Deoxyribozyme-Based Ligase Logic Gates and Their Initial Circuits. Journal of the American Chemical Society, 2005, 127, 6914-6915.	13.7	164
10	Exercises in Molecular Computing. Accounts of Chemical Research, 2014, 47, 1845-1852.	15.6	151
11	Electrochemical Aptamer-Based Sensors for Improved Therapeutic Drug Monitoring and High-Precision, Feedback-Controlled Drug Delivery. ACS Sensors, 2019, 4, 2832-2837.	7.8	142
12	Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors. Nature Chemistry, 2014, 6, 1003-1008.	13.6	118
13	Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Science Advances, 2022, 8, eabk0967.	10.3	118
14	In vitro selection and amplification protocols for isolation of aptameric sensors for small molecules. Methods, 2016, 106, 58-65.	3.8	92
15	High-Affinity Nucleic-Acid-Based Receptors for Steroids. ACS Chemical Biology, 2017, 12, 3103-3112.	3.4	82
16	Optimizing Cross-reactivity with Evolutionary Search for Sensors. Journal of the American Chemical Society, 2012, 134, 1642-1647.	13.7	71
17	Phenylalanine Monitoring via Aptamer-Field-Effect Transistor Sensors. ACS Sensors, 2019, 4, 3308-3317.	7.8	57
18	Cross-Reactive Arrays Based on Three-Way Junctions. Journal of the American Chemical Society, 2003, 125, 6085-6089.	13.7	53

Milan N Stojanović

#	Article	IF	CITATIONS
19	Computing with Nucleic Acids. , 2005, , 427-455.		41
20	An aptamer-based microfluidic device for thermally controlled affinity extraction. Microfluidics and Nanofluidics, 2009, 6, 479-487.	2.2	39
21	Molecular Computing with Deoxyribozymes. Progress in Molecular Biology and Translational Science, 2008, 82, 199-217.	1.9	31
22	Nucleic acid isolation and enrichment on a microchip. Sensors and Actuators A: Physical, 2013, 195, 183-190.	4.1	23
23	Integrated Microfluidic Isolation of Aptamers Using Electrophoretic Oligonucleotide Manipulation. Scientific Reports, 2016, 6, 26139.	3.3	22
24	Triggered Release of an Active Peptide Conjugate from a DNA Device by an Orally Administrable Small Molecule. Angewandte Chemie - International Edition, 2009, 48, 4394-4397.	13.8	19
25	Some Experiments and Directions in Molecular Computing and Robotics. Israel Journal of Chemistry, 2011, 51, 99-105.	2.3	18
26	Detecting hydrophobic molecules with nucleic acid-based receptors. Current Opinion in Chemical Biology, 2010, 14, 751-757.	6.1	14
27	Integrated Microfluidic Selex Using Free Solution Electrokinetics. Journal of the Electrochemical Society, 2017, 164, B3122-B3129.	2.9	14
28	New therapeutic approaches and novel alternatives for organophosphate toxicity. Toxicology Letters, 2018, 291, 1-10.	0.8	14
29	An Aptameric Microfluidic System for Specific Purification, Enrichment, and Mass Spectrometric Detection of Biomolecules. Journal of Microelectromechanical Systems, 2009, 18, 1198-1207.	2.5	13
30	An Integrated Microfluidic SELEX Approach Using Combined Electrokinetic and Hydrodynamic Manipulation. SLAS Technology, 2017, 22, 63-72.	1.9	12
31	Hydrogel Microfilaments toward Intradermal Health Monitoring. IScience, 2019, 21, 328-340.	4.1	12
32	Implicit-OR tiling of deoxyribozymes: Construction of molecular scale OR, NAND and four-input logic gates. Journal of the Serbian Chemical Society, 2003, 68, 321-326.	0.8	11
33	Bead-based polymerase chain reaction on a microchip. Microfluidics and Nanofluidics, 2012, 13, 749-760.	2.2	8
34	Isolation of thermally sensitive protein-binding oligonucleotides on a microchip. Microfluidics and Nanofluidics, 2015, 19, 795-804.	2.2	7
35	Light-directed migration of D. discoideum slugs in microfabricated confinements. Sensors and Actuators A: Physical, 2012, 188, 312-319.	4.1	5
36	DNA-based Nanosystems. New Generation Computing, 2008, 26, 297-312.	3.3	4

#	Article	IF	CITATIONS
37	Insulin Hexamerâ€Caged Gadolinium Ion as MRI Contrastâ€oâ€phore. Chemistry - A European Journal, 2018, 24, 10646-10652.	3.3	4
38	Isolation of thermally sensitive aptamers on a microchip. , 2012, , .		3
39	Programmed Affinity Extraction of Molecules on a Microfluidic Platform. , 2007, , .		2
40	Allosteric regulation of small-molecule binding by aptimers. Journal of the Serbian Chemical Society, 2004, 69, 871-875.	0.8	2
41	A Microfluidic Affinity Cocaine Sensor. , 2009, , .		1
42	Specific cell capture and temperature-mediated release using surface-immobilized aptamers in a microfluidic device. , 2011, , .		1
43	Microfluidic selection of aptamers using combined electrokinetic and hydrodynamic manipulation. , 2015, , .		0
44	Frontispiece: Insulin Hexamer-Caged Gadolinium Ion as MRI Contrast-o-phore. Chemistry - A European Journal, 2018, 24, .	3.3	0
45	Microfluidic Isolation of Aptamers for Glycan Targets. , 2019, , .		0
46	Formation and Stimuli-Directed Migration of Slugs in Microchips. Journal of Medical and Biological Engineering, 2013, 33, 263-268.	1.8	0