
Ryo Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6411216/publications.pdf Version: 2024-02-01

Ρνο Ειμιτλ

#	Article	IF	CITATIONS
1	Role of muscle stem cells in sarcopenia. , 2021, , 109-138.		Ο
2	Overexpression of Gata4, Mef2c, and Tbx5 Generates Induced Cardiomyocytes Via Direct Reprogramming and Rare Fusion in the Heart. Circulation, 2021, 143, 2123-2125.	1.6	10
3	Nuclear factor E2-related factor 2 (NRF2) deficiency accelerates fast fibre type transition in soleus muscle during space flight. Communications Biology, 2021, 4, 787.	4.4	17
4	Direct reprogramming with Sendai virus vectors repaired infarct hearts at the chronic stage. Biochemical and Biophysical Research Communications, 2021, 560, 87-92.	2.1	24
5	Direct Reprogramming as a Novel Approach for Cardiovascular Regeneration. Nihon Shoni Junkanki Gakkai Zasshi = Pediatric Cardiology and Cardiac Surgery, 2021, 37, 10-17.	0.0	Ο
6	Soft Matrix Promotes Cardiac Reprogramming via Inhibition of YAP/TAZ and Suppression of Fibroblast Signatures. Stem Cell Reports, 2020, 15, 612-628.	4.8	53
7	Estrogen Receptor \hat{l}^2 Controls Muscle Growth and Regeneration in Young Female Mice. Stem Cell Reports, 2020, 15, 577-586.	4.8	40
8	Satellite cell expansion is mediated by P-eIF2α dependent Tacc3 translation. Development (Cambridge), 2020, 148, .	2.5	8
9	Distinct Roles of Zmynd17 and PGC1α in Mitochondrial Quality Control and Biogenesis in Skeletal Muscle. Frontiers in Cell and Developmental Biology, 2019, 7, 330.	3.7	8
10	Slow Your Roll: Inhibiting SETD7 Activity Permits ExÂVivo Expansion of Muscle Stem Cells. Cell Stem Cell, 2018, 22, 146-147.	11.1	0
11	Siglec-15-targeting therapy increases bone mass in rats without impairing skeletal growth. Bone, 2018, 116, 172-180.	2.9	25
12	Zmynd17 controls muscle mitochondrial quality and wholeâ€body metabolism. FASEB Journal, 2018, 32, 5012-5025.	0.5	23
13	Translational Control of the Myogenic Program in Developing, Regenerating, and Diseased Skeletal Muscle. Current Topics in Developmental Biology, 2018, 126, 67-98.	2.2	13
14	Prenatal myonuclei play a crucial role in skeletal muscle hypertrophy in rodents. American Journal of Physiology - Cell Physiology, 2017, 312, C233-C243.	4.6	6
15	Fragile X mental retardation protein regulates skeletal muscle stem cell activity by regulating the stability of Myf5 mRNA. Skeletal Muscle, 2017, 7, 18.	4.2	15
16	elF2α, a potential target for stem cell-based therapies. Stem Cell Investigation, 2016, 3, 30-30.	3.0	0
17	HMGB1 accelerates skin regeneration by inducing bone marrow mesenchymal stromal cells. Journal of Dermatological Science, 2016, 84, e51.	1.9	0
18	Receptor for Advanced Glycation End Products-Mediated Signaling Impairs the Maintenance of Bone Marrow Mesenchymal Stromal Cells in Diabetic Model Mice. Stem Cells and Development, 2016, 25, 1721-1732.	2.1	35

Ryo Fujita

#	Article	IF	CITATIONS
19	653. Systemic High Mobility Group Box 1 Administration Suppresses Skin Inflammation By Inducing Accumulation of PDGFRα+ Mesenchymal Cells from Bone Marrow. Molecular Therapy, 2015, 23, S260.	8.2	0
20	Systemic high-mobility group box 1 administration suppresses skin inflammation by inducing an accumulation of PDGFRI±+ mesenchymal cells from bone marrow. Scientific Reports, 2015, 5, 11008.	3.3	47
21	Transplanted Bone Marrow–Derived Circulating PDGFRα+ Cells Restore Type VII Collagen in Recessive Dystrophic Epidermolysis Bullosa Mouse Skin Graft. Journal of Immunology, 2015, 194, 1996-2003.	0.8	61
22	Speed and/or inclination-dependent mobilization of human leg muscles during walking with a unique exception. Acta Astronautica, 2015, 116, 237-246.	3.2	4
23	Endogenous Mesenchymal Stromal Cells in Bone Marrow Are Required to Preserve Muscle Function in mdx Mice. Stem Cells, 2015, 33, 962-975.	3.2	22
24	Scribble dictates orderly stem cell fate. Oncotarget, 2015, 6, 18738-18739.	1.8	1
25	Retardation of C2C12 myoblast cell proliferation by exposure to low-temperature atmospheric plasma. Journal of Physiological Sciences, 2014, 64, 365-375.	2.1	15
26	Anti-interleukin-6 receptor antibody (MR16-1) promotes muscle regeneration via modulation of gene expressions in infiltrated macrophages. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3170-3180.	2.4	25
27	HSP25 can modulate myofibrillar desmin cytoskeleton following the phosphorylation at Ser15 in rat soleus muscle. Journal of Applied Physiology, 2012, 112, 176-186.	2.5	15
28	Effects of hindlimb unloading on neurogenesis in the hippocampus of newly weaned rats. Neuroscience Letters, 2012, 509, 76-81.	2.1	11
29	Effect of Molecular Hydrogen Saturated Alkaline Electrolyzed Water on Disuse Muscle Atrophy in Gastrocnemius Muscle. Journal of Physiological Anthropology, 2011, 30, 195-201.	2.6	28
30	Responses of HSC70 expression in diencephalon to iron deficiency anemia in rats. Journal of Physiological Sciences, 2011, 61, 445-56.	2.1	0
31	Mechanical Stretch Activates Signaling Events for Protein Translation Initiation and Elongation in C2C12 Myoblasts. Molecules and Cells, 2010, 30, 513-518.	2.6	28
32	Tyrosine phosphorylation regulates mechanical stretchâ€induced activation of protein translation initiation in C2C12 myoblasts. FASEB Journal, 2010, 24, 989.11.	0.5	0