
Joana Abrantes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6411066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review. Veterinary Research, 2012, 43, 12.	3.0	302
2	Proposal for a unified classification system and nomenclature of lagoviruses. Journal of General Virology, 2017, 98, 1658-1666.	2.9	148
3	Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evolutionary Biology, 2011, 11, 368.	3.2	139
4	The wide utility of rabbits as models of human diseases. Experimental and Molecular Medicine, 2018, 50, 1-10.	7.7	103
5	Histo-Blood Group Antigens Act as Attachment Factors of Rabbit Hemorrhagic Disease Virus Infection in a Virus Strain-Dependent Manner. PLoS Pathogens, 2011, 7, e1002188.	4.7	94
6	New Variant of Rabbit Hemorrhagic Disease Virus, Portugal, 2012–2013. Emerging Infectious Diseases, 2013, 19, 1900-2.	4.3	86
7	Spread of new variant RHDV in domestic rabbits on the Iberian Peninsula. Veterinary Microbiology, 2014, 169, 67-73.	1.9	83
8	Full genomic analysis of new variant rabbit hemorrhagic disease virus revealed multiple recombination events. Journal of General Virology, 2015, 96, 1309-1319.	2.9	79
9	Is the New Variant RHDV Replacing Genogroup 1 in Portuguese Wild Rabbit Populations?. Viruses, 2015, 7, 27-36.	3.3	66
10	Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Scientific Reports, 2016, 6, 36072.	3.3	58
11	Insights into the evolution of the new variant rabbit haemorrhagic disease virus (GI.2) and the identification of novel recombinant strains. Transboundary and Emerging Diseases, 2018, 65, 983-992.	3.0	52
12	Evidence for recombination in the major capsid gene VP60 of the rabbit haemorrhagic disease virus (RHDV). Archives of Virology, 2008, 153, 329-335.	2.1	50
13	Evolution of rabbit haemorrhagic disease virus (RHDV) in the European rabbit (Oryctolagus) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
14	Overcoming species barriers: an outbreak of Lagovirus europaeus GI.2/RHDV2 in an isolated population of mountain hares (Lepus timidus). BMC Veterinary Research, 2018, 14, 367.	1.9	47
15	Sharing of Endogenous Lentiviral Gene Fragments among Leporid Lineages Separated for More than 12 Million Years. Journal of Virology, 2009, 83, 2386-2388.	3.4	45
16	Cross-species comparison of mammalian saliva using an LC-MALDI based proteomic approach. Proteomics, 2015, 15, 1598-1607.	2.2	44
17	Epidemiology of RHDV2 (<i>Lagovirus europaeus</i> /Gl.2) in free-living wild European rabbits in Portugal. Transboundary and Emerging Diseases, 2018, 65, e373-e382.	3.0	41
18	Molecular epidemiology of <scp>R</scp> abbit <scp>H</scp> aemorrhagic <scp>D</scp> isease <scp>V</scp> irus in <scp>A</scp> ustralia: when one became many. Molecular Ecology, 2014, 23, 408-420.	3.9	40

#	Article	IF	CITATIONS
19	An evolutionary perspective of mammal salivary peptide families: Cystatins, histatins, statherin and PRPs. Archives of Oral Biology, 2013, 58, 451-458.	1.8	39
20	Worldwide rapid spread of the novel rabbit haemorrhagic disease virus (GI.2/RHDV2/b). Transboundary and Emerging Diseases, 2019, 66, 1762-1764.	3.0	37
21	Recombination at the emergence of the pathogenic rabbit haemorrhagic disease virus Lagovirus europaeus/Gl.2. Scientific Reports, 2020, 10, 14502.	3.3	36
22	Diversity and evolutionary history of the MHC DQA gene in leporids. Immunogenetics, 2008, 60, 515-525.	2.4	32
23	An overview of the lagomorph immune system and its genetic diversity. Immunogenetics, 2016, 68, 83-107.	2.4	32
24	Emergence of Pathogenicity in Lagoviruses: Evolution from Pre-existing Nonpathogenic Strains or through a Species Jump?. PLoS Pathogens, 2015, 11, e1005087.	4.7	31
25	Detection of positive selection in the major capsid protein VP60 of the rabbit haemorrhagic disease virus (RHDV). Virus Research, 2008, 137, 253-256.	2.2	30
26	Field and experimental data indicate that the eastern cottontail (Sylvilagus floridanus) is susceptible to infection with European brown hare syndrome (EBHS) virus and not with rabbit haemorrhagic disease (RHD) virus. Veterinary Research, 2015, 46, 13.	3.0	27
27	Tracking the evolution of the G1/RHDVb recombinant strains introduced from the Iberian Peninsula to the Azores islands, Portugal. Infection, Genetics and Evolution, 2015, 34, 307-313.	2.3	27
28	Detection of RHDVa on the Iberian Peninsula: isolation of an RHDVa strain from a Spanish rabbitry. Archives of Virology, 2014, 159, 321-326.	2.1	26
29	Insights into the European rabbit (Oryctolagus cuniculus) innate immune system: genetic diversity of the toll-like receptor 3 (TLR3) in wild populations and domestic breeds. BMC Genetics, 2013, 14, 73.	2.7	25
30	Widespread Gene Conversion of Alpha-2-Fucosyltransferase Genes in Mammals. Journal of Molecular Evolution, 2009, 69, 22-31.	1.8	24
31	Detection of RHDV strains in the Iberian hare (Lepus granatensis): earliest evidence of rabbit lagovirus cross-species infection. Veterinary Research, 2014, 45, 94.	3.0	24
32	Gl.1b/Gl.1b/Gl.2 recombinant rabbit hemorrhagic disease virus 2 (Lagovirus europaeus/Gl.2) in Morocco, Africa. Archives of Virology, 2019, 164, 279-283.	2.1	24
33	Detection of RHDV strains in the Iberian hare (Lepus granatensis): earliest evidence of rabbit lagovirus cross-species infection. Veterinary Research, 2014, 45, 94.	3.0	24
34	A shared unusual genetic change at the chemokine receptor type 5 between Oryctolagus, Bunolagus and Pentalagus. Conservation Genetics, 2011, 12, 325-330.	1.5	23
35	Complete genome sequence of two rabbit hemorrhagic disease virus variant b isolates detected on the Iberian Peninsula. Archives of Virology, 2015, 160, 877-881.	2.1	23
36	The evolutionary history of the allopolyploid Squalius alburnoides (Cyprinidae) complex in the northern Iberian Peninsula. Heredity, 2011, 106, 100-112.	2.6	22

#	Article	IF	CITATIONS
37	Molecular evolution and antigenic variation of European brown hare syndrome virus (EBHSV). Virology, 2014, 468-470, 104-112.	2.4	21
38	Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs. Innate Immunity, 2015, 21, 787-801.	2.4	21
39	Maximum-likelihood approaches reveal signatures of positive selection in IL genes in mammals. Innate Immunity, 2014, 20, 184-191.	2.4	19
40	Evolution of C, D and S-Type Cystatins in Mammals: An Extensive Gene Duplication in Primates. PLoS ONE, 2014, 9, e109050.	2.5	18
41	Leporid immunoglobulin G shows evidence of strong selective pressure on the hinge and CH3 domains. Open Biology, 2014, 4, 140088.	3.6	18
42	Recombination between G2 and G6 strains of rabbit hemorrhagic disease virus (RHDV) in China. Archives of Virology, 2017, 162, 269-272.	2.1	18
43	Extensive gene conversion between CCR2 and CCR5 in domestic cat (<i>Felis catus</i>). International Journal of Immunogenetics, 2007, 34, 321-324.	1.8	17
44	TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network. Biology Open, 2013, 2, 453-465.	1.2	17
45	Not-So-Novel Michigan Rabbit Calicivirus1. Emerging Infectious Diseases, 2010, 16, 1331-1332.	4.3	16
46	Host-Specific Glycans Are Correlated with Susceptibility to Infection by Lagoviruses, but Not with Their Virulence. Journal of Virology, 2018, 92, .	3.4	15
47	Complete Genomic Sequences of Rabbit Hemorrhagic Disease Virus G1 Strains Isolated in the European Rabbit Original Range. Journal of Virology, 2012, 86, 13886-13886.	3.4	14
48	Complete coding sequences of European brown hare syndrome virus (EBHSV) strains isolated in 1982 in Sweden. Archives of Virology, 2013, 158, 2193-2196.	2.1	14
49	Not so pseudo: the evolutionary history of protein phosphatase 1 regulatory subunit 2 and related pseudogenes. BMC Evolutionary Biology, 2013, 13, 242.	3.2	14
50	Characterization of old RHDV strains by complete genome sequencing identifies a novel genetic group. Scientific Reports, 2017, 7, 13599.	3.3	14
51	Pseudogenization of the MCP-2/CCL8 chemokine gene in European rabbit (genus Oryctolagus), but not in species of Cottontail rabbit (Sylvilagus) and Hare (Lepus). BMC Genetics, 2012, 13, 72.	2.7	13
52	The antiviral activity of rodent and lagomorph SERINC3 and SERINC5 is counteracted by known viral antagonists. Journal of General Virology, 2019, 100, 278-288.	2.9	13
53	Identification of a new European rabbit IgA with a serine-rich hinge region. PLoS ONE, 2018, 13, e0201567.	2.5	12
54	Retrospective Analysis Shows That Most RHDV GI.1 Strains Circulating Since the Late 1990s in France and Sweden Were Recombinant GI.3P–GI.1d Strains. Genes, 2020, 11, 910.	2.4	12

#	Article	IF	CITATIONS
55	Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae. International Journal of Immunogenetics, 2008, 35, 111-117.	1.8	11
56	Convergent evolution of IL-6 in two leporids (Oryctolagus and Pentalagus) originated an extended protein. Immunogenetics, 2014, 66, 589-595.	2.4	11
57	Analysis of substitution rates showed that TLR5 is evolving at different rates among mammalian groups. BMC Evolutionary Biology, 2019, 19, 221.	3.2	11
58	Partial sequencing of recent Portuguese myxoma virus field isolates exhibits a high degree of genetic stability. Veterinary Microbiology, 2010, 140, 161-166.	1.9	10
59	Evolution of the guanylate binding protein (GBP) genes: Emergence of GBP7 genes in primates and further acquisition of a unique GBP3 gene in simians. Molecular Immunology, 2021, 132, 79-81.	2.2	10
60	Strong selection of the TLR2 coding region among the Lagomorpha suggests an evolutionary history that differs from other mammals. Immunogenetics, 2019, 71, 437-443.	2.4	9
61	Lessons from viruses that affect lagomorphs. Science, 2020, 369, 386-386.	12.6	9
62	Spillover event of recombinant <i>Lagovirus europaeus</i> /GI.2 into the Iberian hare (<i>Lepus) Tj ETQq0 0 0 rg</i>	gBT3/Qverlo	ock 10 Tf 50 4
63	Full genome sequences are key to disclose RHDV2 emergence in the Macaronesian islands. Virus Genes, 2018, 54, 1-4.	1.6	9
64	Neofunctionalization of the Sec1 α1,2fucosyltransferase Paralogue in Leporids Contributes to Glycan Polymorphism and Resistance to Rabbit Hemorrhagic Disease Virus. PLoS Pathogens, 2015, 11, e1004759.	4.7	7
65	Characterization of thymosin β4 in mammals' saliva. Peptides, 2013, 40, 1-7.	2.4	6
66	Sequencing of Sylvilagus VDJ genes reveals a new VHa allelic lineage and shows that ancient VH lineages were retained differently in leporids. Immunogenetics, 2014, 66, 719-726.	2.4	6
67	Pseudogenization of CCL14 in the Ochotonidae (pika) family. Innate Immunity, 2015, 21, 647-654.	2.4	6
68	Genetic diversity comparison of the DQA gene in European rabbit (Oryctolagus cuniculus) populations. Immunogenetics, 2015, 67, 579-590.	2.4	6
69	Evolution of CCL11: genetic characterization in lagomorphs and evidence of positive and purifying selection in mammals. Innate Immunity, 2016, 22, 336-343.	2.4	6
70	A Review on the Methods Used for the Detection and Diagnosis of Rabbit Hemorrhagic Disease Virus (RHDV). Microorganisms, 2021, 9, 972.	3.6	6
71	Rabbit Hemorrhagic Disease Virus Detected in Pico, Azores, Portugal, Revealed a Unique Endemic Strain with More Than 17 Years of Independent Evolution, Viruses, 2014, 6, 2698-2707	3.3	5

72Adaptive Gene Loss? Tracing Back the Pseudogenization of the Rabbit CCL8 Chemokine. Journal of
Molecular Evolution, 2016, 83, 12-25.1.85

#	Article	IF	CITATIONS
73	TLR7 and TLR8 evolution in lagomorphs: different patterns in the different lineages. Immunogenetics, 2022, 74, 475-485.	2.4	5
74	Evolutionary Insights into IL17A in Lagomorphs. Mediators of Inflammation, 2015, 2015, 1-7.	3.0	4
75	Evolutionary study of leporid CD4 reveals a hotspot of genetic variability within the D2 domain. Immunogenetics, 2016, 68, 477-482.	2.4	4
76	Evolution of CCL16 in Glires (Rodentia and Lagomorpha) shows an unusual random pseudogenization pattern. BMC Evolutionary Biology, 2019, 19, 59.	3.2	4
77	Hepatitis E virus is likely circulating in wild rabbits from Iberian Peninsula. Transboundary and Emerging Diseases, 2020, 67, 1761.	3.0	4
78	An update on the rabbit hemorrhagic disease virus (RHDV) strains circulating in Portugal in the 1990s: earliest detection of G3-G5 and G6. Archives of Virology, 2017, 162, 2061-2065.	2.1	3
79	Multiâ€event capture–recapture models estimate the diagnostic performance of serological tests for myxoma and rabbit haemorrhagic disease viruses in the absence of reference samples. Transboundary and Emerging Diseases, 2022, 69, .	3.0	3
80	Evolutionary studies on the betaretrovirus RERV-H in the Leporidae family reveal an endogenization in the ancestor of Oryctolagus, Bunolagus and Pentalagus at 9 million years ago. Virus Research, 2019, 262, 24-29.	2.2	2
81	Multiple Introductions of Rabbit Hemorrhagic Disease Virus Lagovirus europaeus/Gl.2 in Africa. Biology, 2021, 10, 883.	2.8	2
82	Adenovirus emergence in a red squirrel (Sciurus vulgaris) in Iberian Peninsula. Transboundary and Emerging Diseases, 2020, 67, 2300-2306.	3.0	1