

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/641105/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New insights into the key bifunctional role of sulfur in Fe–N–C single-atom catalysts for ORR/OER. Nanoscale, 2022, 14, 3212-3223.	5.6	32
2	Layer-by-Layer Assembly of CeO _{2–<i>x</i>} @C-rGO Nanocomposites and CNTs as a Multifunctional Separator Coating for Highly Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 18634-18645.	8.0	24
3	One-pot conversion of biomass-derived levulinic acid to furanic biofuel 2-methyltetrahydrofuran over bimetallic NiCo/γ-Al2O3 catalysts. Molecular Catalysis, 2022, 524, 112317.	2.0	7
4	Synergy between dynamic covalent boronic ester and boron–nitrogen coordination: strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties. Materials Horizons, 2021, 8, 216-223.	12.2	145
5	Theoretical understanding for anchoring effect of MOFs for lithium-sulfur batteries. Computational and Theoretical Chemistry, 2021, 1196, 113110.	2.5	4
6	Mechanistic Studies on <i>N</i> -Heterocyclic Carbene-Catalyzed Umpolung of β,γ-Unsaturated α-Diketones. Journal of Organic Chemistry, 2021, 86, 4432-4439.	3.2	3
7	Regioselective Construction of Chemically Transformed Phosphide–Metal Nanoheterostructures for Enhanced Hydrogen Evolution Catalysis. Inorganic Chemistry, 2021, 60, 7269-7275.	4.0	4
8	3D Tungsten Disulfide/Carbon Nanotube Networks as Separator Coatings and Cathode Additives for Stable and Fast Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 45547-45557.	8.0	17
9	New insights into synergistic effects of La2O3 and nitrogen doped carbon for improved redox kinetics in lithium-sulfur batteries: A computational study. Applied Surface Science, 2021, 563, 150172.	6.1	10
10	Selective Production of 2-Butanol from Hydrogenolysis of Levulinic Acid Catalyzed by the Non-precious NiMn Bimetallic Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 15603-15611.	6.7	14
11	Photocatalytic site-selective C–H difluoroalkylation of aromatic aldehydes. Chemical Communications, 2020, 56, 1497-1500.	4.1	20
12	Mechanistic Insights into the Solvent-Driven Adsorptive Hydrodeoxygenation of Biomass Derived Levulinate Acid/Ester to 2-Methyltetrahydrofuran over Bimetallic Cu–Ni Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 11477-11490.	6.7	33
13	Theoretical Insights into the Favorable Functionalized Ti ₂ C-Based MXenes for Lithium–Sulfur Batteries. ACS Omega, 2020, 5, 29272-29283.	3.5	28
14	Mechanism and Origin of Ligand-Controlled Chemo- and Regioselectivities in Palladium-Catalyzed Methoxycarbonylation of Alkynes. Journal of Organic Chemistry, 2020, 85, 7136-7151.	3.2	18
15	A multifunctional separator based on scandium oxide nanocrystal decorated carbon nanotubes for high performance lithium–sulfur batteries. Nanoscale, 2020, 12, 6832-6843.	5.6	34
16	Theoretical prediction of B/Al-doped black phosphorus as potential cathode material in lithium-sulfur batteries. Applied Surface Science, 2020, 512, 145639.	6.1	22
17	Local nanostructures enhanced the thermoelectric performance of n-type PbTe. Journal of Materials Chemistry A, 2019, 7, 18458-18467.	10.3	53
18	Mechanistic Insights into the Chemo- and Regio-Selective B(C6F5)3 Catalyzed C–H Functionalization of Phenols with Diazoesters. Journal of Organic Chemistry, 2019, 84, 14508-14519.	3.2	27

QI ZHANG

#	Article	IF	CITATIONS
19	A computational study on H ₂ S release and amide formation from thionoesters and cysteine. Organic and Biomolecular Chemistry, 2019, 17, 5771-5778.	2.8	3
20	Nitrogen, sulfur-codoped micro–mesoporous carbon derived from boat-fruited sterculia seed for robust lithium–sulfur batteries. RSC Advances, 2019, 9, 15715-15726.	3.6	24
21	Sulfur-deficient MoS2-x promoted lithium polysulfides conversion in lithium-sulfur battery: A first-principles study. Applied Surface Science, 2019, 487, 452-463.	6.1	58
22	Dithiothreitol-assisted polysulfide reduction in the interlayer of lithium–sulfur batteries: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 16435-16443.	2.8	7
23	Mechanism and Origin of Stereoselectivity of Pd-Catalyzed Cascade Annulation of Aryl Halide, Alkene, and Carbon Monoxide via C–H Activation. Journal of Organic Chemistry, 2019, 84, 4353-4362.	3.2	8
24	The mechanism and structure–activity relationship of amide bond formation by silane derivatives: a computational study. Organic and Biomolecular Chemistry, 2019, 17, 9232-9242.	2.8	10
25	Mechanistic insights into the ligand-controlled regioselectivity in Cu-catalyzed terminal alkynes alkylboration. Journal of Organometallic Chemistry, 2018, 871, 48-55.	1.8	9
26	Mechanistic Insights into Solvent and Ligand Dependency in Cu(I)-Catalyzed Allylic Alkylation with <i>gem</i> -Diborylalkanes. Journal of Organic Chemistry, 2018, 83, 561-570.	3.2	14
27	Mechanism of Vanadium-Catalyzed Selective C–O and C–C Cleavage of Lignin Model Compound. ACS Catalysis, 2016, 6, 4399-4410.	11.2	90
28	Ligand-Controlled Regiodivergent Copper-Catalyzed Alkylboration of Unactivated Terminal Alkynes. ACS Catalysis, 2016, 6, 6417-6421.	11.2	84
29	Mechanism of Boron-CatalyzedN-Alkylation of Amines with Carboxylic Acids. Journal of Organic Chemistry, 2016, 81, 6235-6243.	3.2	27
30	Mechanism of the Visible Light-Mediated Gold-Catalyzed Oxyarylation Reaction of Alkenes. ACS Catalysis, 2016, 6, 798-808.	11.2	91
31	Mechanism of Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes with a Nitrite Co-Catalyst. ACS Catalysis, 2015, 5, 1414-1423.	11.2	51
32	NHC-catalyzed homoenolate reaction of enals and nitroalkenes: computational study of mechanism, chemoselectivity and stereoselectivity. Organic Chemistry Frontiers, 2014, 1, 614-624.	4.5	30
33	Computational study on mechanism of Rh(iii)-catalyzed oxidative Heck coupling of phenol carbamates with alkenes. Dalton Transactions, 2013, 42, 4175.	3.3	57
34	Mechanistic Study of Palladium-Catalyzed Chemoselective C(sp3)–H Activation of Carbamoyl Chloride. Organometallics, 2013, 32, 4165-4173.	2.3	23