Ziad Nahas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6410990/publications.pdf Version: 2024-02-01

ΖΙΛΟ ΝΑΗΛΟ

#	Article	IF	CITATIONS
1	A narrative review on invasive brain stimulation for treatment-resistant depression. Revista Brasileira De Psiquiatria, 2022, 44, 317-330.	1.7	3
2	Personalizing Dual-Target Cortical Stimulation with Bayesian Parameter Optimization Successfully Treats Central Post-Stroke Pain: A Case Report. Brain Sciences, 2022, 12, 25.	2.3	4
3	DLPFC stimulation alters working memory related activations and performance: An interleaved TMS-fMRI study. Brain Stimulation, 2022, 15, 823-832.	1.6	9
4	Long-term stimulation of the anteromedial thalamus increases hippocampal neurogenesis and spatial reference memory in adult rats. Behavioural Brain Research, 2021, 402, 113114.	2.2	5
5	A closer look at patterns and characteristics of suicide in Lebanon: A first nationwide report of cases from 2008 to 2018. Asian Journal of Psychiatry, 2021, 59, 102635.	2.0	9
6	Changes in sleep with transcranial magnetic stimulation in adults with treatment resistant depression: Preliminary results from a naturalistic study. European Psychiatry, 2021, 64, S153-S153.	0.2	0
7	Decreased interhemispheric connectivity and increased cortical excitability in unmedicated schizophrenia: A prefrontal interleaved TMS fMRI study. Brain Stimulation, 2020, 13, 1467-1475.	1.6	27
8	A Blind Module Identification Approach for Predicting Effective Connectivity Within Brain Dynamical Subnetworks. Brain Topography, 2019, 32, 28-65.	1.8	0
9	Association between substanceÂuse disorders and self―and otherâ€directed aggression: An integrated model approach. Aggressive Behavior, 2019, 45, 652-661.	2.4	10
10	Optimization of epidural cortical stimulation for treatment-resistant depression. Brain Stimulation, 2018, 11, 239-240.	1.6	9
11	Nitrous Oxide Induces Prominent Cell Proliferation in Adult Rat Hippocampal Dentate Gyrus. Frontiers in Cellular Neuroscience, 2018, 12, 135.	3.7	15
12	The relationship between clinical insight and cognitive and affective empathy in schizophrenia. Schizophrenia Research: Cognition, 2018, 12, 56-65.	1.3	10
13	Depression: Current Conceptual Trends. , 2016, , 1-21.		0
14	Long-Term Efficacy of Repeated Daily Prefrontal Transcranial Magnetic Stimulation (TMS) In Treatmnt-Resistant Depression. Focus (American Psychiatric Publishing), 2016, 14, 277-282.	0.8	0
15	Cascade of nonlinear entropy and statistics to discriminate fetal heart rates. , 2016, , .		2
16	Five-Year Follow-Up of Bilateral Epidural Prefrontal Cortical Stimulation for Treatment-Resistant Depression. Brain Stimulation, 2016, 9, 897-904.	1.6	36
17	Health in times of uncertainty in the eastern Mediterranean region, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet Global Health, 2016, 4, e704-e713.	6.3	147
18	Expanded Safety and Efficacy Data for a New Method of Performing Electroconvulsive Therapy. Journal of ECT, 2016, 32, 197-203.	0.6	27

#	Article	IF	CITATIONS
19	Adaptation and initial validation of the Patient Health Questionnaire – 9 (PHQ-9) and the Generalized Anxiety Disorder – 7 Questionnaire (GAD-7) in an Arabic speaking Lebanese psychiatric outpatient sample. Psychiatry Research, 2016, 239, 245-252.	3.3	236
20	Thalamic Stimulation in Awake Rats Induces Neurogenesis in the Hippocampal Formation. Brain Stimulation, 2016, 9, 101-108.	1.6	25
21	Entropy complexity analysis of electroencephalographic signals during pre-ictal, seizure and post-ictal brain events. , 2015, , .		6
22	Reduction of stimulus artifacts in lctal EEG recordings during electroconvulsive therapy. , 2015, , .		0
23	Resting-State Functional Connectivity of Antero-Medial Prefrontal Cortex Sub-Regions in Major Depression and Relationship to Emotional Intelligence. International Journal of Neuropsychopharmacology, 2015, 18, .	2.1	23
24	Neutral face distractors differentiate performance between depressed and healthy adolescents during an emotional working memory task. European Child and Adolescent Psychiatry, 2014, 23, 659-667.	4.7	22
25	Regional Cerebral Blood Flow Changes Associated With Focal Electrically Administered Seizure Therapy (FEAST). Brain Stimulation, 2014, 7, 483-485.	1.6	15
26	A Pilot Functional MRI Study of the Effects of Prefrontal rTMS on Pain Perception. Pain Medicine, 2013, 14, 999-1009.	1.9	35
27	The Painfulness of Active, but not Sham, Transcranial Magnetic Stimulation Decreases Rapidly Over Time: Results From the Double-Blind Phase of the OPT-TMS Trial. Brain Stimulation, 2013, 6, 925-928.	1.6	33
28	A Feasibility Study of a New Method for Electrically Producing Seizures in Man: Focal Electrically Administered Seizure Therapy [FEAST]. Brain Stimulation, 2013, 6, 403-408.	1.6	67
29	Prefrontal rTMS for treating depression: Location and intensity results from the OPT-TMS multi-site clinical trial. Brain Stimulation, 2013, 6, 108-117.	1.6	91
30	How to Assess the Role of Transcranial Magnetic Stimulation in Nicotine Addiction. Biological Psychiatry, 2013, 73, 702-703.	1.3	0
31	Reliability and validity of the Arabic Screen for Child Anxiety Related Emotional Disorders (SCARED) in a clinical sample. Psychiatry Research, 2013, 209, 222-228.	3.3	40
32	Validation of an Arabic multi-informant psychiatric diagnostic interview for children and adolescents: Development and Well Being Assessment-Arabic (DAWBA-Arabic). Comprehensive Psychiatry, 2013, 54, 1034-1041.	3.1	13
33	Increased Prolactin Concentrations in a Patient with Bipolar Disorder. Clinical Chemistry, 2013, 59, 473-475.	3.2	4
34	LONG-TERM EFFICACY OF REPEATED DAILY PREFRONTAL TRANSCRANIAL MAGNETIC STIMULATION (TMS) IN TREATMNT-RESISTANT DEPRESSION. Depression and Anxiety, 2012, 29, 883-890.	4.1	48
35	Using interleaved transcranial magnetic stimulation/functional magnetic resonance imaging (fMRI) and dynamic causal modeling to understand the discrete circuit specific changes of medications: Lamotrigine and valproic acid changes in motor or prefrontal effective connectivity. Psychiatry Research - Neuroimaging, 2011, 194, 141-148.	1.8	40
36	Anatomically based targeting of prefrontal cortex for rTMS. Brain Stimulation, 2011, 4, 300-302.	1.6	6

#	Article	IF	CITATIONS
37	Improving the antidepressant efficacy of transcranial magnetic stimulation: maximizing the number of stimulations and treatment location in treatment-resistant depression. Depression and Anxiety, 2011, 28, 973-980.	4.1	88
38	Safety, Tolerability, and Effectiveness of High Doses of Adjunctive Daily Left Prefrontal Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression in a Clinical Setting. Journal of ECT, 2011, 27, 18-25.	0.6	105
39	Brain Stimulation Therapies for Mood Disorders: The Continued Necessity of Electroconvulsive Therapy. Journal of the American Psychiatric Nurses Association, 2011, 17, 214-216.	1.0	2
40	Fractional Anisotropy Changes After Several Weeks of Daily Left High-Frequency Repetitive Transcranial Magnetic Stimulation of the Prefrontal Cortex to Treat Major Depression. Journal of ECT, 2011, 27, 5-10.	0.6	40
41	Interleaved transcranial magnetic stimulation and fMRI suggests that lamotrigine and valproic acid have different effects on corticolimbic activity. Psychopharmacology, 2010, 209, 233-244.	3.1	18
42	Personality and Reaction Time after Sleep Deprivation. Current Psychology, 2010, 29, 24-33.	2.8	3
43	Durability of clinical benefit with transcranial magnetic stimulation (TMS) in the treatment of pharmacoresistant major depression: assessment of relapse during a 6-month, multisite, open-label study. Brain Stimulation, 2010, 3, 187-199.	1.6	130
44	The frontiers in brain imaging and neuromodulation: a New Challenge. Frontiers in Psychiatry, 2010, 1, 25.	2.6	3
45	Inverse effects of oxytocin on attributing mental activity to others in depressed and healthy subjects: a double-blind placebo controlled fMRI study. Frontiers in Psychiatry, 2010, 1, 134.	2.6	71
46	Daily Left Prefrontal Transcranial Magnetic Stimulation Therapy for Major Depressive Disorder. Archives of General Psychiatry, 2010, 67, 507.	12.3	835
47	Reply Regarding "Efficacy and Safety of Transcranial Magnetic Stimulation in the Acute Treatment of Major Depression: A Multisite Randomized Controlled Trial― Biological Psychiatry, 2010, 67, e15-e17.	1.3	16
48	Bilateral Epidural Prefrontal Cortical Stimulation for Treatment-Resistant Depression. Biological Psychiatry, 2010, 67, 101-109.	1.3	96
49	White matter correlates of clinical function in schizophrenia using diffusion tensor imaging. Schizophrenia Research, 2010, 116, 99-100.	2.0	2
50	Dorsolateral prefrontal cortex stimulation modulates electrocortical measures of visual attention: evidence from direct bilateral epidural cortical stimulation in treatment-resistant mood disorder. Neuroscience, 2010, 170, 281-288.	2.3	36
51	Controversy: Repetitive transcranial magnetic stimulation or transcranial direct current stimulation shows efficacy in treating psychiatric diseases (depression, mania, schizophrenia,) Tj ETQq1 1 0.784314 rgBT /Ov	erlaack 10	Tf7580 177 Td
52	Decreasing procedural pain over time of left prefrontal rtms for depression: Initial results from the open-label phase of a multisite trial (OPT-TMS). Brain Stimulation, 2009, 2, 88-92.	1.6	37
53	Motor threshold in transcranial magnetic stimulation: The impact of white matter fiber orientation and skullâ€ŧo•ortex distance. Human Brain Mapping, 2009, 30, 2044-2055.	3.6	97
54	Relapse rates with longâ€ŧerm antidepressant drug therapy: a metaâ€analysis. Human Psychopharmacology, 2009, 24, 401-408.	1.5	53

#	Article	IF	CITATIONS
55	Lamotrigine and valproic acid have different effects on motorcortical neuronal excitability. Journal of Neural Transmission, 2009, 116, 423-429.	2.8	38
56	Cost-effectiveness of transcranial magnetic stimulation in the treatment of major depression: a health economics analysis. Advances in Therapy, 2009, 26, 346-368.	2.9	67
57	A Pilot Study Investigating the Effects of Fast Left Prefrontal rTMS on Chronic Neuropathic Pain. Pain Medicine, 2009, 10, 840-849.	1.9	75
58	Anti-ceramidase LCL385 acutely reduces BCL-2 expression in the hippocampus but is not associated with an increase of learned helplessness in rats. Behavioural Brain Research, 2009, 197, 41-44.	2.2	12
59	More Lateral and Anterior Prefrontal Coil Location Is Associated with Better Repetitive Transcranial Magnetic Stimulation Antidepressant Response. Biological Psychiatry, 2009, 66, 509-515.	1.3	171
60	Focal Electrically Administered Therapy. Journal of ECT, 2009, 25, 91-98.	0.6	15
61	A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders. Brain Stimulation, 2008, 1, 112-121.	1.6	161
62	Significant analgesic effects of one session of postoperative left prefrontal cortex repetitive transcranial magnetic stimulation: A replication study. Brain Stimulation, 2008, 1, 122-127.	1.6	78
63	Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia. Schizophrenia Research, 2008, 101, 142-151.	2.0	73
64	Transcranial Magnetic Stimulation for Treating Psychiatric Conditions: What Have We Learned So Far?. Canadian Journal of Psychiatry, 2008, 53, 553-554.	1.9	4
65	Serial Vagus Nerve Stimulation Functional MRI in Treatment-Resistant Depression. Neuropsychopharmacology, 2007, 32, 1649-1660.	5.4	130
66	Vagus nerve stimulation for the treatment of depression and other neuropsychiatric disorders. Expert Review of Neurotherapeutics, 2007, 7, 63-74.	2.8	45
67	Vagus Nerve Stimulation and Emotional Responses to Food among Depressed Patients. Journal of Diabetes Science and Technology, 2007, 1, 771-779.	2.2	18
68	Brain stimulation for the treatment of psychiatric disorders. Current Opinion in Psychiatry, 2007, 20, 250-254.	6.3	64
69	Neuroimaging of Repetitive Transcranial Magnetic Stimulation Effects on the Brain. , 2007, 23, 35-52.		2
70	Vagus nerve stimulation acutely alters food craving in adults with depression. Appetite, 2007, 48, 145-153.	3.7	75
71	Double-blind donepezil–placebo crossover augmentation study of atypical antipsychotics in chronic, stable schizophrenia: A pilot study. Schizophrenia Research, 2007, 93, 131-135.	2.0	23
72	A single 20Âmg dose of dihydrexidine (DAR-0100), a full dopamine D1 agonist, is safe and tolerated in patients with schizophrenia. Schizophrenia Research, 2007, 93, 42-50.	2.0	86

#	Article	IF	CITATIONS
73	A single 20Âmg dose of the full D1 dopamine agonist dihydrexidine (DAR-0100) increases prefrontal perfusion in schizophrenia. Schizophrenia Research, 2007, 94, 332-341.	2.0	79
74	Efficacy and Safety of Transcranial Magnetic Stimulation in the Acute Treatment of Major Depression: A Multisite Randomized Controlled Trial. Biological Psychiatry, 2007, 62, 1208-1216.	1.3	1,451
75	Fifteen Minutes of Left Prefrontal Repetitive Transcranial Magnetic Stimulation Acutely Increases Thermal Pain Thresholds in Healthy Adults. Pain Research and Management, 2007, 12, 287-290.	1.8	86
76	Emotion facilitates action: A transcranial magnetic stimulation study of motor cortex excitability during picture viewing. Psychophysiology, 2007, 44, 91-97.	2.4	186
77	Acute and Long-term VNS Effects on Pain Perception in a Case of Treatment-Resistant Depression. Neurocase, 2006, 12, 216-220.	0.6	26
78	Estimating Resting Motor Thresholds in Transcranial Magnetic Stimulation Research and Practice. Journal of ECT, 2006, 22, 169-175.	0.6	129
79	Donepezil effects on mood in patients with schizophrenia and schizoaffective disorder. International Journal of Neuropsychopharmacology, 2006, 9, 603.	2.1	7
80	Tolerability and Safety of High Daily Doses of Repetitive Transcranial Magnetic Stimulation in Healthy Young Men. Journal of ECT, 2006, 22, 49-53.	0.6	66
81	Postoperative Left Prefrontal Repetitive Transcranial Magnetic Stimulation Reduces Patient-controlled Analgesia Use. Anesthesiology, 2006, 105, 557-562.	2.5	86
82	Reducing Pain and Unpleasantness During Repetitive Transcranial Magnetic Stimulation. Journal of ECT, 2006, 22, 259-264.	0.6	44
83	Vagus nerve stimulation (VNS) for depression: What do we know now and what should be done next?. Current Psychiatry Reports, 2006, 8, 445-451.	4.5	13
84	Decreased Brain Activation During a Working Memory Task at Rested Baseline Is Associated with Vulnerability to Sleep Deprivation. Sleep, 2005, 28, 433-448.	1.1	176
85	Decreased Cortical Response to Verbal Working Memory Following Sleep Deprivation. Sleep, 2005, 28, 55-67.	1.1	152
86	FUNCTIONAL NEUROANATOMY OF SUBCOMPONENT COGNITIVE PROCESSES INVOLVED IN VERBAL WORKING MEMORY. International Journal of Neuroscience, 2005, 115, 1017-1032.	1.6	33
87	Two-Year Outcome of Vagus Nerve Stimulation (VNS) for Treatment of Major Depressive Episodes. Journal of Clinical Psychiatry, 2005, 66, 1097-1104.	2.2	323
88	Potential Therapeutic Uses of Transcranial Magnetic Stimulation in Psychiatric Disorders. , 2005, , 311-327.		0
89	Functional Magnetic Resonance Imaging and Transcranial Magnetic Stimulation for Major Depression. Psychiatric Annals, 2005, 35, 131-136.	0.1	0
90	Interleaved Transcranial Magnetic Stimulation/Functional MRI Confirms that Lamotrigine Inhibits Cortical Excitability in Healthy Young Men. Neuropsychopharmacology, 2004, 29, 1395-1407.	5.4	85

#	Article	IF	CITATIONS
91	Mechanisms of action of vagus nerve stimulation (VNS). Clinical Neuroscience Research, 2004, 4, 71-79.	0.8	15
92	Safety and benefits of distance-adjusted prefrontal transcranial magnetic stimulation in depressed patients 55-75 years of age: A pilot study. Depression and Anxiety, 2004, 19, 249-256.	4.1	123
93	Can left prefrontal rTMS be used as a maintenance treatment for bipolar depression?. Depression and Anxiety, 2004, 20, 98-100.	4.1	96
94	Acute vagus nerve stimulation using different pulse widths produces varying brain effects. Biological Psychiatry, 2004, 55, 816-825.	1.3	87
95	Acute left prefrontal transcranial magnetic stimulation in depressed patients is associated with immediately increased activity in prefrontal cortical as well as subcortical regions. Biological Psychiatry, 2004, 55, 882-890.	1.3	153
96	A Pilot Safety Study of Repetitive Transcranial Magnetic Stimulation (rTMS) in Tourette's Syndrome. Cognitive and Behavioral Neurology, 2004, 17, 109-117.	0.9	67
97	The Maximum-likelihood Strategy for Determining Transcranial Magnetic Stimulation Motor Threshold, Using Parameter Estimation by Sequential Testing Is Faster Than Conventional Methods With Similar Precision. Journal of ECT, 2004, 20, 160-165.	0.6	104
98	BOLD fMRI response to direct stimulation (transcranial magnetic stimulation) of the motor cortex shows no decline with age. Journal of Neural Transmission, 2003, 110, 495-507.	2.8	16
99	A review of functional neuroimaging studies of vagus nerve stimulation (VNS). Journal of Psychiatric Research, 2003, 37, 443-455.	3.1	200
100	BOLD-fMRI response vs. transcranial magnetic stimulation (TMS) pulse-train length: Testing for linearity. Journal of Magnetic Resonance Imaging, 2003, 17, 279-290.	3.4	40
101	Left prefrontal transcranial magnetic stimulation (TMS) treatment of depression in bipolar affective disorder: a pilot study of acute safety and efficacy. Bipolar Disorders, 2003, 5, 40-47.	1.9	189
102	Transcranial magnetic stimulation. Neurosurgery Clinics of North America, 2003, 14, 283-301.	1.7	51
103	Augmenting Atypical Antipsychotics with a Cognitive Enhancer (Donepezil) Improves Regional Brain Activity in Schizophrenia Patients: A Pilot Double-blind Placebo Controlled BOLD fMRI Study. Neurocase, 2003, 9, 274-282.	0.6	58
104	Prefrontal Cortex Transcranial Magnetic Stimulation Does not Change Local Diffusion: A Magnetic Resonance Imaging Study in Patients With Depression. Cognitive and Behavioral Neurology, 2003, 16, 128-135.	0.9	19
105	Mechanisms and the Current State of Transcranial Magnetic Stimulation. CNS Spectrums, 2003, 8, 496-514.	1.2	79
106	Mechanisms and State of the Art of Transcranial Magnetic Stimulation. Journal of ECT, 2002, 18, 170-181.	0.6	94
107	Vagus nerve stimulation (VNS) for major depressive episodes: one year outcomes. Biological Psychiatry, 2002, 51, 280-287.	1.3	262
108	Vagus nerve stimulation (VNS) synchronized BOLD fMRI suggests that VNS in depressed adults has frequency/dose dependent effects. Journal of Psychiatric Research, 2002, 36, 219-227.	3.1	169

#	Article	IF	CITATIONS
109	Potential new brain stimulation therapies in bipolar illness: transcranial magnetic stimulation and vagus nerve stimulation. Clinical Neuroscience Research, 2002, 2, 256-265.	0.8	9
110	Vagus nerve stimulation therapy. Neurology, 2002, 59, S56-61.	1.1	72
111	The new invasive brain stimulation techniques in psychiatry. Revista Brasileira De Psiquiatria, 2002, 24, 54-54.	1.7	0
112	The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biological Psychiatry, 2001, 49, 454-459.	1.3	217
113	Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biological Psychiatry, 2001, 50, 712-720.	1.3	226
114	What Does ECS Stand for? Repetitive Transcranial Magnetic Stimulation in Depression. Epilepsy and Behavior, 2001, 2, S21-S29.	1.7	4
115	A review of the new minimally invasive brain stimulation techniques in psychiatry. Revista Brasileira De Psiquiatria, 2001, 23, 100-109.	1.7	8
116	Feasibility of Vagus Nerve Stimulation–Synchronized Blood Oxygenation Level–Dependent Functional MRI. Investigative Radiology, 2001, 36, 470-479.	6.2	118
117	Vagus Nerve Stimulation (VNSâ,,¢) for Treatment-Resistant Depression Efficacy, Side Effects, and Predictors of Outcome. Neuropsychopharmacology, 2001, 25, 713-728.	5.4	456
118	Brain Effects of TMS Delivered Over Prefrontal Cortex in Depressed Adults. Journal of Neuropsychiatry and Clinical Neurosciences, 2001, 13, 459-470.	1.8	127
119	Transcranial magnetic stimulation in psychiatry: research and therapeutic applications. International Review of Psychiatry, 2001, 13, 18-23.	2.8	3
120	A Double-blind Placebo-controlled Case Study of the Use of Donepezil to Improve Cognition in a Schizoaffective Disorder Patient: Functional MRI Correlates Neurocase, 2001, 7, 105-110.	0.6	72
121	Transcranial magnetic stimulation in psychiatry: research and therapeutic applications. International Review of Psychiatry, 2001, 13, 18-23.	2.8	1
122	Vagus Nerve Stimulation: A New Form of Therapeutic Brain Stimulation. CNS Spectrums, 2000, 5, 43-52.	1.2	25
123	How Coil–Cortex Distance Relates to Age, Motor Threshold, and Antidepressant Response to Repetitive Transcranial Magnetic Stimulation. Journal of Neuropsychiatry and Clinical Neurosciences, 2000, 12, 376-384.	1.8	232
124	Motor Cortex Brain Activity Induced by 1-Hz Transcranial Magnetic Stimulation Is Similar in Location and Level to That for Volitional Movement. Investigative Radiology, 2000, 35, 676-683.	6.2	85
125	Lack of Significant Changes on Magnetic Resonance Scans Before and After 2 Weeks of Daily Left Prefrontal Repetitive Transcranial Magnetic Stimulation for Depression. Journal of ECT, 2000, 16, 380-390.	0.6	53
126	BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). Journal of Magnetic Resonance Imaging, 2000, 11, 569-574.	3.4	131

#	Article	IF	CITATIONS
127	Structural and functional neuroimaging of electroconvulsive therapy and transcranial magnetic stimulation. Depression and Anxiety, 2000, 12, 144-156.	4.1	33
128	Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter studyâ^—â^—See accompanying Editorial, in this issue Biological Psychiatry, 2000, 47, 276-286.	1.3	612
129	Vagus nerve stimulation: a new tool for brain research and therapyâ^—. Biological Psychiatry, 2000, 47, 287-295.	1.3	389
130	Functional Impairment in COPD Patients: The Impact of Anxiety and Depression. Psychosomatics, 2000, 41, 465-471.	2.5	263
131	VAGUS NERVE STIMULATION. Psychiatric Clinics of North America, 2000, 23, 757-783.	1.3	70
132	A controlled trial of daily left prefrontal cortex TMS for treating depression. Biological Psychiatry, 2000, 48, 962-970.	1.3	393
133	Single-Dose Pharmacokinetics of Methylphenidate in CYP2D6 Extensive and Poor Metabolizers. Journal of Clinical Psychopharmacology, 2000, 20, 347-349.	1.4	42
134	Repetitive transcranial magnetic stimulation: perspectives for application in the treatment of bipolar and unipolar disorders. Bipolar Disorders, 1999, 1, 73-80.	1.9	26
135	Improvement of depression following transcranial magnetic stimulation. Current Psychiatry Reports, 1999, 1, 114-124.	4.5	33
136	Prefrontal repetitive transcranial magnetic stimulation (rTMS) changes relative perfusion locally and remotely. Human Psychopharmacology, 1999, 14, 161-170.	1.5	84
137	A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biological Psychiatry, 1999, 45, 385-394.	1.3	276
138	Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS. Journal of Neuropsychiatry and Clinical Neurosciences, 1999, 11, 426-35.	1.8	162
139	Safety and Feasibility of Repetitive Transcranial Magnetic Stimulation in the Treatment of Anxious Depression in Pregnancy. Journal of Clinical Psychiatry, 1999, 60, 50-52.	2.2	84
140	rTMS studies of mood and emotion. Electroencephalography and Clinical Neurophysiology Supplement, 1999, 51, 304-14.	0.0	11
141	Low frequency daily left prefrontal rTMS improves mood in bipolar depression: a placebo-controlled case report. Human Psychopharmacology, 1998, 13, 271-275.	1.5	20
142	63. Perfusion spect studies of rTMS effects on blood flow in health and depression. Biological Psychiatry, 1998, 43, S19-S20.	1.3	6
143	315. Frequency and intensity in the antidepressant effect of left prefrontal rTMS. Biological Psychiatry, 1998, 43, S94-S95.	1.3	10
144	Motor Threshold in Transcranial Magnetic Stimulation. Journal of ECT, 1998, 14, 25???27.	0.6	211

3

#	Article	IF	CITATIONS
145	Echoplanar BOLD fMRI of Brain Activation Induced by Concurrent Transcranial Magnetic Stimulation. Investigative Radiology, 1998, 33, 336-340.	6.2	191

146 Somatic Treatments in Psychiatry. , 0, , 521-548.