
Soo Hyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6410893/publications.pdf Version: 2024-02-01

SOO HYUN KIM

#	Article	IF	CITATIONS
1	Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing. Acta Biomaterialia, 2022, 141, 219-232.	8.3	31
2	Current status and future direction of metallic and polymeric materials for advanced vascular stents. Progress in Materials Science, 2022, 126, 100922.	32.8	19
3	Self-assembling peptide gels promote angiogenesis and functional recovery after spinal cord injury in rats. Journal of Tissue Engineering, 2022, 13, 204173142210864.	5.5	15
4	Use of Elastic, Porous, and Ultrathin Co ulture Membranes to Control the Endothelial Barrier Function via Cell Alignment. Advanced Functional Materials, 2021, 31, 2008172.	14.9	16
5	Enhanced Regeneration of Vascularized Adipose Tissue with Dual 3D-Printed Elastic Polymer/dECM Hydrogel Complex. International Journal of Molecular Sciences, 2021, 22, 2886.	4.1	22
6	Tissue-engineered vascular microphysiological platform to study immune modulation of xenograft rejection. Science Advances, 2021, 7, .	10.3	5
7	Stereocomplex Polylactide for Drug Delivery and Biomedical Applications: A Review. Molecules, 2021, 26, 2846.	3.8	29
8	Substance P/Heparin onjugated PLCL Mitigate Acute Gliosis on Neural Implants and Improve Neuronal Regeneration via Recruitment of Neural Stem Cells. Advanced Healthcare Materials, 2021, 10, e2100107.	7.6	13
9	Three-Dimensional Vascularized Lung Cancer-on-a-Chip with Lung Extracellular Matrix Hydrogels for In Vitro Screening. Cancers, 2021, 13, 3930.	3.7	30
10	The Regeneration of Large-Sized and Vascularized Adipose Tissue Using a Tailored Elastic Scaffold and dECM Hydrogels. International Journal of Molecular Sciences, 2021, 22, 12560.	4.1	9
11	Integrating Organs-on-Chips: Multiplexing, Scaling, Vascularization, and Innervation. Trends in Biotechnology, 2020, 38, 99-112.	9.3	69
12	Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Acta Biomaterialia, 2020, 101, 357-371.	8.3	64
13	Development of an Anisotropically Organized Brain dECM Hydrogel-Based 3D Neuronal Culture Platform for Recapitulating the Brain Microenvironment in Vivo. ACS Biomaterials Science and Engineering, 2020, 6, 610-620.	5.2	27
14	Strategy for Securing Key Patents in the Field of Biomaterials. Macromolecular Research, 2020, 28, 87-98.	2.4	4
15	Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. Science Advances, 2020, 6, .	10.3	34
16	Combinatorial Inhibition of Cell Surface Receptors Using Dual Aptamer-Functionalized Nanoconstructs for Cancer Treatment. Pharmaceutics, 2020, 12, 689.	4.5	5
17	Organ‣evel Functional 3D Tissue Constructs with Complex Compartments and their Preclinical Applications. Advanced Materials, 2020, 32, e2002096.	21.0	12
18	Biological Aging Modulates Cell Migration via Lamin A/C-Dependent Nuclear Motion. Micromachines, 2020, 11, 801.	2.9	3

#	Article	IF	CITATIONS
19	Augmented peripheral nerve regeneration through elastic nerve guidance conduits prepared using a porous PLCL membrane with a 3D printed collagen hydrogel. Biomaterials Science, 2020, 8, 6261-6271.	5.4	48
20	Strategy for Stereocomplexation of Polylactide Using O/W Emulsion Blending and Applications as Composite Fillers, Drug Carriers, and Self-Nucleating Agents. ACS Sustainable Chemistry and Engineering, 2020, 8, 8752-8761.	6.7	13
21	Extracellular pH modulating injectable gel for enhancing immune checkpoint inhibitor therapy. Journal of Controlled Release, 2019, 315, 65-75.	9.9	26
22	pH-Triggered Silk Fibroin/Alginate Structures Fabricated in Aqueous Two-Phase System. ACS Biomaterials Science and Engineering, 2019, 5, 5897-5905.	5.2	6
23	Creation of polylactide vascular scaffolds with high compressive strength using a novel melt-tube drawing method. Polymer, 2019, 166, 130-137.	3.8	15
24	Stem Cells Seeded on Multilayered Scaffolds Implanted into an Injured Bladder Rat Model Improves Bladder Function. Tissue Engineering and Regenerative Medicine, 2019, 16, 201-212.	3.7	10
25	The effect of Substance P/Heparin conjugated PLCL polymer coating of bioinert ePTFE vascular grafts on the recruitment of both ECs and SMCs for accelerated regeneration. Scientific Reports, 2019, 9, 17083.	3.3	20
26	Covalent Immobilization of EPCs-Affinity Peptide on Poly(L-Lactide-co-ε-Caprolactone) Copolymers to Enhance EPCs Adhesion and Retention for Tissue Engineering Applications. Macromolecular Research, 2019, 27, 61-72.	2.4	5
27	<i>In situ</i> blood vessel regeneration using neuropeptide substance Pâ€conjugated smallâ€diameter vascular grafts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1669-1683.	3.4	13
28	Skin Regeneration with Self-Assembled Peptide Hydrogels Conjugated with Substance P in a Diabetic Rat Model. Tissue Engineering - Part A, 2018, 24, 21-33.	3.1	35
29	Nanofibrous Electrospun Heart Decellularized Extracellular Matrix-Based Hybrid Scaffold as Wound Dressing for Reducing Scarring in Wound Healing. Tissue Engineering - Part A, 2018, 24, 830-848.	3.1	39
30	Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomaterialia, 2018, 67, 270-281.	8.3	113
31	Networked concave microwell arrays for constructing 3D cell spheroids. Biofabrication, 2018, 10, 015001.	7.1	37
32	Small diameter vascular graft with fibroblast cells and electrospun poly (L-lactide- <i>co</i> -ε-caprolactone) scaffolds: Cell Matrix Engineering. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 942-959.	3.5	18
33	Supercritical fluid technology parameters affecting size and behavior of stereocomplex polylactide particles and their composites. Polymer Engineering and Science, 2018, 58, 1193-1200.	3.1	12
34	In situ cardiac regeneration by using neuropeptide substance P and IGF-1C peptide eluting heart patches. International Journal of Energy Production and Management, 2018, 5, 303-316.	3.7	19
35	In Situ Blood Vessel Regeneration Using SP (Substance P) and SDF (Stromal Cell–Derived Factor)-1α Peptide Eluting Vascular Grafts. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e117-e134.	2.4	34
36	Skin Regeneration with a Scaffold of Predefined Shape and Bioactive Peptide Hydrogels. Tissue Engineering - Part A, 2018, 24, 1518-1530.	3.1	25

Soo Hyun Kim

#	Article	IF	CITATIONS
37	In Situ Homologous Polymerization of <scp>l</scp> -Lactide Having a Stereocomplex Crystal. Macromolecules, 2018, 51, 6303-6311.	4.8	16
38	Combinatorial therapy with three-dimensionally cultured adipose-derived stromal cells and self-assembling peptides to enhance angiogenesis and preserve cardiac function in infarcted hearts. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2816-2827.	2.7	19
39	Effect of platelet-rich plasma with self-assembled peptide on the rotator cuff tear model in rat. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 77-85.	2.7	14
40	Electrically controllable twisted-coiled artificial muscle actuators using surface-modified polyester fibers. Smart Materials and Structures, 2017, 26, 035048.	3.5	43
41	Biodegradable vascular stents with high tensile and compressive strength: a novel strategy for applying monofilaments via solid-state drawing and shaped-annealing processes. Biomaterials Science, 2017, 5, 422-431.	5.4	36
42	Simultaneous microfluidic spinning of multiple strands of submicron fiber for the production of free-standing porous membranes for biological application. Biofabrication, 2017, 9, 025026.	7.1	13
43	UV-curing kinetics and performance development of in situ curable 3D printing materials. European Polymer Journal, 2017, 93, 140-147.	5.4	51
44	SDFâ€1α peptide tethered polyester facilitates tissue repair by endogenous cell mobilization and recruitment. Journal of Biomedical Materials Research - Part A, 2017, 105, 2670-2684.	4.0	31
45	Substance P/dexamethasone-encapsulated PLGA scaffold fabricated using supercritical fluid process for calvarial bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3469-3480.	2.7	22
46	Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomaterialia, 2017, 60, 3-22.	8.3	120
47	The use of microfluidic spinning fiber as an ophthalmology suture showing the good anastomotic strength control. Scientific Reports, 2017, 7, 16264.	3.3	12
48	Enhanced Cartilaginous Tissue Formation with a Cell Aggregate-Fibrin-Polymer Scaffold Complex. Polymers, 2017, 9, 348.	4.5	12
49	Fully biobased robust biocomposites of PLA with assisted nucleation by monodispersed stereocomplexed polylactide particles. RSC Advances, 2016, 6, 111129-111138.	3.6	4
50	Biomaterials for host cell recruitment and stem cell fate modulation for tissue regeneration: Focus on neuropeptide substance P. Macromolecular Research, 2016, 24, 951-960.	2.4	7
51	Covalent immobilization of MSC-affinity peptide on poly(L-lactide-co-ε-caprolactone) copolymer to enhance stem cell adhesion and retention for tissue engineering applications. Macromolecular Research, 2016, 24, 986-994.	2.4	9
52	Nanografted Substrata and Triculture of Human Pericytes, Fibroblasts, and Endothelial Cells for Studying the Effects on Angiogenesis. Tissue Engineering - Part A, 2016, 22, 698-706.	3.1	19
53	Novel Strategy of Lactide Polymerization Leading to Stereocomplex Polylactide Nanoparticles Using Supercritical Fluid Technology. ACS Sustainable Chemistry and Engineering, 2016, 4, 4521-4528.	6.7	17
54	Poly(L-lactic acid) scaffold with oriented micro-valley surface and superior properties fabricated by solid-state drawing for blood-contact biomaterials. Biofabrication, 2016, 8, 045010.	7.1	25

#	Article	IF	CITATIONS
55	Covalent immobilization of stem cell inducing/recruiting factor and heparin on cellâ€free smallâ€diameter vascular graft for accelerated <i>in situ</i> tissue regeneration. Journal of Biomedical Materials Research - Part A, 2016, 104, 1352-1371.	4.0	35
56	Synergistic Action of IL-8 and Bone Marrow Concentrate on Cartilage Regeneration Through Upregulation of Chondrogenic Transcription Factors. Tissue Engineering - Part A, 2016, 22, 363-374.	3.1	30
57	Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials, 2016, 90, 85-115.	11.4	94
58	Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a co-culture system. Macromolecular Research, 2016, 24, 131-142.	2.4	19
59	Combined Treatment with Systemic and Local Delivery of Substance P Coupled with Self-Assembled Peptides for a Hind Limb Ischemia Model. Tissue Engineering - Part A, 2016, 22, 545-555.	3.1	17
60	Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model. Biomaterials, 2016, 74, 119-130.	11.4	65
61	The effect of stereocomplex polylactide particles on the mechanical properties of poly(lactide-co-glycolide) copolymer. Journal of Bioactive and Compatible Polymers, 2016, 31, 3-14.	2.1	0
62	In Situ Recruitment of Human Bone Marrow-Derived Mesenchymal Stem Cells Using Chemokines for Articular Cartilage Regeneration. Cell Transplantation, 2015, 24, 1067-1083.	2.5	52
63	Self-Assembling Peptide Nanofibers Coupled with Neuropeptide Substance P for Bone Tissue Engineering. Tissue Engineering - Part A, 2015, 21, 1237-1246.	3.1	50
64	Bi-layered PLCL/(PLGA/β-TCP) composite scaffold for osteochondral tissue engineering. Journal of Bioactive and Compatible Polymers, 2015, 30, 178-187.	2.1	18
65	In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels. Journal of Bioscience and Bioengineering, 2015, 120, 91-98.	2.2	26
66	A novel tissue-engineered trachea with a mechanical behavior similarÂto native trachea. Biomaterials, 2015, 62, 106-115.	11.4	110
67	Stem cell recruitment, angiogenesis, and tissue regeneration in substance Pâ€conjugated poly(<scp>l</scp> ″actideâ€ <i>co</i> ‣›â€caprolactone) nonwoven meshes. Journal of Biomedical Materials Research - Part A, 2015, 103, 2673-2688.	4.0	36
68	TGF-β 3 encapsulated PLCL scaffold by a supercritical CO 2 –HFIP co-solvent system for cartilage tissue engineering. Journal of Controlled Release, 2015, 206, 101-107.	9.9	52
69	TGF- β 3 encapsulated PLCL scaffold by supercritical CO 2 –HFIP co-solvent system for cartilage tissue engineering. Journal of Controlled Release, 2015, 213, e100-e101.	9.9	5
70	High-pressure phase behaviour of poly(d-lactic acid), trichloromethane, and carbon dioxide ternary mixture systems. Journal of Chemical Thermodynamics, 2015, 90, 216-223.	2.0	3
71	Strategies for Recruitment of Stem Cells to Treat Myocardial Infarction. Current Pharmaceutical Design, 2015, 21, 1584-1597.	1.9	20
72	A Faster Approach to Stereocomplex Formation of High Molecular Weight Polylactide Using Supercritical Dimethyl Ether. Porrime, 2015, 39, 453-460.	0.2	7

#	Article	IF	CITATIONS
73	Blood-compatible Bio-inspired Surface of Poly(L-lactide-co-Îμ-caprolactone) Films Prepared Using Poor Co-solvent Casting. Porrime, 2015, 39, 40-45.	0.2	0
74	High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems. Korean Chemical Engineering Research, 2015, 53, 193-198.	0.2	0
75	Effect of self-assembled peptide–mesenchymal stem cell complex on the progression of osteoarthritis in a rat model. International Journal of Nanomedicine, 2014, 9 Suppl 1, 141.	6.7	74
76	Preparation of topographically modified poly(L-lactic acid)-b-Poly(É›-caprolactone)-b-poly(L-lactic acid) tri-block copolymer film surfaces and its blood compatibility. Macromolecular Research, 2014, 22, 1229-1237.	2.4	11
77	Biodegradable blends of stereocomplex polylactide and lignin by supercritical carbon dioxide-solvent system. Macromolecular Research, 2014, 22, 74-78.	2.4	15
78	Bioinspired adhesive coating on PET film for antifouling surface modification. Macromolecular Research, 2014, 22, 203-209.	2.4	11
79	Bio-based composite of stereocomplex polylactide and cellulose nanowhiskers. Polymer Degradation and Stability, 2014, 109, 430-435.	5.8	28
80	Preparation of lotus-leaf-like structured blood compatible poly(É›-caprolactone)-block-poly(l-lactic) Tj ETQq0 0 0	rgBT/Over	rlock 10 Tf 50
81	Stereocomplex formation of polylactide using microwave irradiation. Polymer International, 2014, 63, 741-745.	3.1	6
82	Phase Behavior of Poly(<scp>d</scp> -lactic acid), Dichloromethane, and Carbon Dioxide Ternary Mixture Systems at High Pressure. Journal of Chemical & Engineering Data, 2014, 59, 2144-2149.	1.9	5
83	Synergism of cellulosic nanowhiskers and graft structure in stereocomplex-based materials: formation in solution and a stereocomplex memory study. Cellulose, 2014, 21, 2539-2548.	4.9	8
84	Behavior and differentiation studies of hASCs and rBMSCs by the Î ³ -ray irradiation. Tissue Engineering and Regenerative Medicine, 2014, 11, 24-31.	3.7	1
85	Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP. Biomaterials, 2014, 35, 2436-2445.	11.4	107
86	An Advanced Class of Bioâ€Hybrid Materials: Bionanocomposites of Inorganic Clays and Organic Stereocomplex Polylactides. Macromolecular Materials and Engineering, 2013, 298, 263-269.	3.6	13
87	Mechanical properties of compliant double layered poly(L-lactide-co-É>-caprolactone) vascular graft. Macromolecular Research, 2013, 21, 886-891.	2.4	18
88	Effects of Pulsatile Bioreactor Culture on Vascular Smooth Muscle Cells Seeded on Electrospun Poly (lactideâ€coâ€iµâ€caprolactone) Scaffold. Artificial Organs, 2013, 37, E168-78.	1.9	23
89	Biodegradable stereocomplex polylactide having flexible É>-caprolactone unit. Macromolecular Research, 2013, 21, 1036-1041.	2.4	13
90	Synthesis and characterization of the biodegradable and elastic terpolymer poly(glycolide-co-L-lactide-co-lµ-caprolactone) for mechano-active tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 386-397.	3.5	9

#	Article	IF	CITATIONS
91	Lotus-leaf-like structured heparin-conjugated poly(L-lactide-co-É›-caprolactone) as a blood compatible material. Colloids and Surfaces B: Biointerfaces, 2013, 103, 463-467.	5.0	28
92	Preparation of enhanced hydrophobic poly(l-lactide-co-ε-caprolactone) films surface and its blood compatibility. Applied Surface Science, 2013, 276, 586-591.	6.1	14
93	Therapeutic angiogenesis of three-dimensionally cultured adipose-derived stem cells in rat infarcted hearts. Cytotherapy, 2013, 15, 542-556.	0.7	35
94	Bioinspired self-adhesive polymer for surface modification to improve antifouling property. Journal of Coatings Technology Research, 2013, 10, 811-819.	2.5	11
95	Melt stability of 8-arms star-shaped stereocomplex polylactide with three-dimensional core structures. Polymer Degradation and Stability, 2013, 98, 1097-1101.	5.8	28
96	Endothelial Differentiation and Vasculogenesis Induced by Threeâ€Dimensional Adiposeâ€Derived Stem Cells. Anatomical Record, 2013, 296, 168-177.	1.4	28
97	Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials, 2013, 34, 1657-1668.	11.4	92
98	A Biocompatible Tissue Scaffold Produced by Supercritical Fluid Processing for Cartilage Tissue Engineering. Tissue Engineering - Part C: Methods, 2013, 19, 181-188.	2.1	30
99	Elastic, double-layered poly (l-lactide-co-ïµ-caprolactone) scaffold for long-term vascular reconstruction. Journal of Bioactive and Compatible Polymers, 2013, 28, 233-246.	2.1	16
100	Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. , 2013, 25, 114-129.		76
101	Fabrication and Medical Applications of Lotus-leaf-like Structured Superhydrophobic Surfaces. Porrime, 2013, 37, 411-419.	0.2	16
102	A Dynamically Cultured Collagen/Cells-Incorporated Elastic Scaffold for Small-Diameter Vascular Grafts. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1807-1820.	3.5	7
103	Fibroblast culture on poly(L-lactide-co-É›-caprolactone) an electrospun nanofiber sheet. Macromolecular Research, 2012, 20, 1234-1242.	2.4	11
104	Three-Dimensional Electrospun Poly(Lactide-Co-É›-Caprolactone) for Small-Diameter Vascular Grafts. Tissue Engineering - Part A, 2012, 18, 1608-1616.	3.1	43
105	Effect of temperature on the exchange bias in naturally oxidized NixCo1â^'x (x=0.2) nanowires fabricated by electrochemical deposition technique. Journal of Alloys and Compounds, 2012, 520, 272-276.	5.5	4
106	Synergistic Effect of Biochemical Factors and Strain on the Smooth Muscle Cell Differentiation of Adipose-Derived Stem Cells on an Elastic Nanofibrous Scaffold. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1579-1593.	3.5	9
107	Stereocomplexation of Poly(<scp>l</scp> -lactide) and Random Copolymer Poly(<scp>d</scp> -lactide- <i>co</i> -Îμ-caprolactone) To Enhance Melt Stability. Macromolecules, 2012, 45, 4012-4014.	4.8	66
108	Rapid stereocomplex formation of polylactide using supercritical fluid technology. Polymer International, 2012, 61, 939-942.	3.1	32

#	Article	IF	CITATIONS
109	Synthesis of poly(D-lactide) with different molecular weight via melt-polymerization. Macromolecular Research, 2012, 20, 515-519.	2.4	10
110	Stereocomplex-nanocomposite formation of polylactide/fluorinated-clay with superior thermal property using supercritical fluid. Macromolecular Research, 2012, 20, 545-548.	2.4	16
111	Optimization of chondrogenic differentiation of human adipose tissue-derived stem cells on poly(L-lactide-co-É›-caprolactone) scaffolds. Macromolecular Research, 2012, 20, 709-714.	2.4	3
112	Adhesion and differentiation of adipose-derived stem cells on a substrate with immobilized fibroblast growth factor. Acta Biomaterialia, 2012, 8, 1759-1767.	8.3	31
113	Magnetic properties of one-dimensional embedded nickel nanostructures in gold nanowires. Current Applied Physics, 2012, 12, 65-68.	2.4	8
114	Small diameter double layer tubular scaffolds using highly elastic PLCL copolymer for vascular tissue engineering. Macromolecular Research, 2011, 19, 122-129.	2.4	22
115	Enhanced regeneration of the ligament–bone interface using a poly(l-lactide–co-ε-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel. Acta Biomaterialia, 2011, 7, 244-257.	8.3	70
116	The enhancement of mature vessel formation and cardiac function in infarcted hearts using dual growth factor delivery with self-assembling peptides. Biomaterials, 2011, 32, 6080-6088.	11.4	93
117	Effect of Ag15+ and Li3+ ion irradiation on superconducting Tl2Ca2Ba2Cu3O10 single crystals. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1117-1120.	1.4	1
118	Fabrication of poly(l-lactide) fibers/sheets using supercritical fluid through flash-spinning process. Macromolecular Research, 2010, 18, 1233-1236.	2.4	5
119	Articular cartilage tissue engineering based on a mechanoâ€active scaffold made of poly(<scp>L</scp> â€lactideâ€coâ€lµâ€caprolactone): <i>In vivo</i> performance in adult rabbits. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94B, 80-88.	3.4	24
120	Two S-wave gap symmetry for single crystals of the superconductor BaFe1.8Co0.2As2. Physica C: Superconductivity and Its Applications, 2010, 470, S506-S507.	1.2	5
121	Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomaterialia, 2010, 6, 1958-1967.	8.3	139
122	Regeneration of Achilles' Tendon: The Role of Dynamic Stimulation for Enhanced Cell Proliferation and Mechanical Properties. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1173-1190.	3.5	53
123	Stereocomplex Formation of High-Molecular-Weight Polylactide Using Supercritical Fluid. Macromolecules, 2010, 43, 1137-1142.	4.8	129
124	The Effect of Hybridization of Hydrogels and Poly(L-lactide-co-ε-caprolactone) Scaffolds on Cartilage Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 581-592.	3.5	25
125	A Novel Seamless Elastic Scaffold for Vascular Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 289-302.	3.5	13
126	Fluctuation conductivity of single-crystalline BaFe1.8Co0.2As2 in the critical region. Journal of Applied Physics, 2010, 108, .	2.5	30

#	Article	IF	CITATIONS
127	A Collagen/Smooth Muscle Cell-Incorporated Elastic Scaffold for Tissue-Engineered Vascular Grafts. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1645-1660.	3.5	29
128	Nanofibrous scaffolds electrospun from elastomeric biodegradable poly(L-lactide-co-ε-caprolactone) copolymer. Biomedical Materials (Bristol), 2009, 4, 015019.	3.3	39
129	Reconstruction of a Rabbit Ulna Bone Defect Using Bone Marrow Stromal Cells and a PLA/ <i>β</i> â€TCP Composite by a Novel Sintering Method. Advanced Engineering Materials, 2009, 11, B169.	3.5	4
130	Design and characterization of a maltose binding protein-linked growth factor for matrix engineering. Biotechnology Letters, 2009, 31, 1677-1684.	2.2	18
131	Copolymerization of L-lactide and $\hat{l}\mu$ -caprolactone in supercritical fluid. Macromolecular Research, 2009, 17, 575-579.	2.4	2
132	The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism. Biomaterials, 2009, 30, 6835-6843.	11.4	57
133	In situ chondrogenic differentiation of human adipose tissue-derived stem cells in a TGF-β1 loaded fibrin–poly(lactide-caprolactone) nanoparticulate complex. Biomaterials, 2009, 30, 4657-4664.	11.4	76
134	The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Biomedical Materials (Bristol), 2009, 4, 055009.	3.3	33
135	Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(l-lactide-co-É›-caprolactone). Biomaterials, 2008, 29, 4630-4636.	11.4	102
136	Antagonistic effect of EGF on FAK phosphorylation/dephosphorylation in a cell. Cell Biochemistry and Function, 2008, 26, 539-547.	2.9	20
137	The effect of gelatin incorporation into electrospun poly(l-lactide-co-É›-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials, 2008, 29, 1872-1879.	11.4	177
138	Application of an elastic biodegradable poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue regeneration. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 1073-1085.	3.5	48
139	Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 61-74.	3.5	40
140	Mechano-active Tissue Engineering. , 2008, , .		0
141	Mechanical Loading-Dependence of mRNA Expressions of Extracellular Matrices of Chondrocytes Inoculated into Elastomeric Microporous Poly(L-lactide-co-ε-caprolactone) Scaffold. Tissue Engineering, 2007, 13, 29-40.	4.6	17
142	Cartilaginous Tissue Formation with an Elastic PLCL Scaffold and Human Adipose Tissue-Derived Stromal Cells. Key Engineering Materials, 2007, 342-343, 385-388.	0.4	0
143	Optimization of Scaffold for a Successful Hydrogel-Seeding Method for Vascular Tissue Engineering. Key Engineering Materials, 2007, 342-343, 333-336.	0.4	3
144	Mechano-Active Scaffold Design Based on Microporous Poly(L-lactide-co-ε-caprolactone) for Articular Cartilage Tissue Engineering: Dependence of Porosity on Compression Force-Applied Mechanical Behaviors. Tissue Engineering, 2006, 12, 449-458.	4.6	72

#	Article	IF	CITATIONS
145	Fabrication of a new tubular fibrous PLCL scaffold for vascular tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 1359-1374.	3.5	46
146	Mechano-Active Cartilage Tissue Engineering. Advances in Science and Technology, 2006, 49, 189.	0.2	0
147	New Technique of Seeding Chondrocytes into Microporous Poly(L-lactide-co-ε-caprolactone) Sponge by Cyclic Compression Force–Induced Suction. Tissue Engineering, 2006, 12, 1811-1820.	4.6	20
148	New Technique of Seeding Chondrocytes into Microporous Poly(L-lactide-cocaprolactone) Sponge by Cyclic Compression Force-Induced Suction. Tissue Engineering, 2006, .	4.6	0
149	Mechanical Loading-Dependence of mRNA Expressions of Extracellular Matrices of Chondrocytes Inoculated into Elastomeric Microporous Poly(L-lactide-co-?-caprolactone) Scaffold. Tissue Engineering, 2006, .	4.6	0
150	Ring-Opening Polymerization of L-Lactide in Supercritical Chlorodifluoromethane. Macromolecular Symposia, 2005, 224, 85-92.	0.7	1
151	Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials, 2005, 26, 1405-1411.	11.4	203
152	Vascular patches tissue-engineered with autologous bone marrow-derived cells and decellularized tissue matrices. Biomaterials, 2005, 26, 1915-1924.	11.4	85
153	A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Biomaterials, 2005, 26, 6314-6322.	11.4	125
154	Histological Behavior of HDPE Scaffolds Fabricated by the "Press-and-Baking―Method. Journal of Bioactive and Compatible Polymers, 2005, 20, 361-376.	2.1	6
155	Smooth muscle-like tissues engineered with bone marrow stromal cells. Biomaterials, 2004, 25, 2979-2986.	11.4	42
156	In vivo biocompatibilty and degradation behavior of elastic poly(l-lactide-co-Îμ-caprolactone) scaffolds. Biomaterials, 2004, 25, 5939-5946.	11.4	230
157	Ring-Opening Polymerization ofL-Lactide and Preparation of Its Microsphere in Supercritical Fluids. Macromolecular Bioscience, 2004, 4, 340-345.	4.1	11
158	Thermally Produced Biodegradable Scaffolds for Cartilage Tissue Engineering. Macromolecular Bioscience, 2004, 4, 802-810.	4.1	76
159	Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 645-660.	3.5	161
160	Morphology of Elastic Poly(l-lactide-co-Îμ-caprolactone) Copolymers and in Vitro and in Vivo Degradation Behavior of Their Scaffolds. Biomacromolecules, 2004, 5, 1303-1309.	5.4	161
161	Effects of Pressure and Temperature on the Kinetics ofl-Lactide Polymerization in Supercritical Chlorodifluoromethane. Macromolecules, 2004, 37, 3564-3568.	4.8	10
162	Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Journal of Biomedical Materials Research Part B, 2003, 66A, 29-37.	3.1	160

#	Article	IF	CITATIONS
163	Improvement of Flexural Strengths of Poly(L-lactic acid) by Solid-State Extrusion, 2Extrusion Through Rectangular Die. Macromolecular Materials and Engineering, 2003, 288, 50-57.	3.6	21
164	Effect of molecular orientation on biodegradability of poly(glycolide-co-Îμ-caprolactone). Polymer Degradation and Stability, 2003, 80, 223-232.	5.8	16
165	In vivo conjunctival reconstruction using modified PLGA grafts for decreased scar formation and contraction. Biomaterials, 2003, 24, 5049-5059.	11.4	63
166	Synthesis and Characterization of Poly(l-lactide)â^'Poly(Îμ-caprolactone) Multiblock Copolymers. Macromolecules, 2003, 36, 5585-5592.	4.8	160
167	Kinetic and Mechanistic Studies ofl-Lactide Polymerization in Supercritical Chlorodifluoromethane. Macromolecules, 2003, 36, 8923-8930.	4.8	26
168	Improved blood compatibility and decreased VSMC proliferation of surface-modified metal grafted with sulfonated PEG or heparin. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 939-952.	3.5	24
169	Synthesis and degradation behaviors of PEO/PL/PEO tri-block copolymers. Macromolecular Research, 2002, 10, 85-90.	2.4	26
170	Microstructure analysis and thermal property of copolymers made of glycolide and ?-caprolactone by stannous octoate. Journal of Polymer Science Part A, 2002, 40, 544-554.	2.3	47
171	Miscibility and Nanoporous Hybrid Film Fabrication of Methylsilsesquioxane (MSSQ) and Star-shaped Polymers. Molecular Crystals and Liquid Crystals, 2001, 370, 301-304.	0.3	0
172	Effect of poly(ethylene glycol) graft polymerization of poly(methyl methacrylate) on cell adhesion. Journal of Cataract and Refractive Surgery, 2001, 27, 766-774.	1.5	47
173	Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation. Biomaterials, 2001, 22, 2115-2123.	11.4	132
174	Improved calcification resistance and biocompatibility of tissue patch grafted with sulfonated PEO or heparin after glutaraldehyde fixation. Journal of Biomedical Materials Research Part B, 2001, 58, 27-35.	3.1	32
175	Improvement of Flexural Strengths of Poly(L-lactic acid) by Solid-State Extrusion. Macromolecular Chemistry and Physics, 2001, 202, 2447-2453.	2.2	15
176	Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch. Polymer Engineering and Science, 2000, 40, 2539-2550.	3.1	193
177	Platelet and bacterial repellence on sulfonated poly(ethylene glycol)-acrylate copolymer surfaces. Colloids and Surfaces B: Biointerfaces, 2000, 18, 355-370.	5.0	48
178	Direct condensation polymerization of lactic acid. Macromolecular Symposia, 1999, 144, 277-287.	0.7	33
179	R&D status of biodegradable polymers in Korea. Macromolecular Symposia, 1999, 144, 85-99.	0.7	0