List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6410784/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Superplasticity of Yttria-Stabilized Tetragonal ZrO <sub>2</sub> Polycrystals. Advanced Ceramic<br>Materials, 1986, 1, 259-263.                                                   | 2.3  | 563       |
| 2  | A superplastic covalent crystal composite. Nature, 1990, 344, 421-423.                                                                                                            | 13.7 | 354       |
| 3  | Three-dimensional microstructural evolution in ideal grain growth—general statistics. Acta<br>Materialia, 2000, 48, 1297-1311.                                                    | 3.8  | 195       |
| 4  | Superplasticity of TZP/AI <sub>2</sub> O <sub>3</sub> Composite. Advanced Ceramic Materials, 1988, 3, 71-76.                                                                      | 2.3  | 190       |
| 5  | Tensile Ductility of Superplastic Al2O3-Y2O3-Si3N4/SiC Composites. Journal of the American Ceramic Society, 1992, 75, 2363-2372.                                                  | 1.9  | 112       |
| 6  | Step model of solution-precipitation creep. Acta Metallurgica Et Materialia, 1994, 42, 1163-1172.                                                                                 | 1.9  | 109       |
| 7  | Superplasticity of Hot Isostatically Pressed Hydroxyapatite. Journal of the American Ceramic Society, 1990, 73, 457-460.                                                          | 1.9  | 103       |
| 8  | Coarsening and grain growth in sintering of two particles of different sizes. Acta Materialia, 2005, 53, 1361-1371.                                                               | 3.8  | 92        |
| 9  | Modeling and Simulation of Elementary Processes in Ideal Sintering. Journal of the American Ceramic Society, 2006, 89, 1471-1484.                                                 | 1.9  | 82        |
| 10 | Mechanics of sintering for coupled grain boundary and surface diffusion. Acta Materialia, 2011, 59, 5379-5387.                                                                    | 3.8  | 80        |
| 11 | Hardening in Creep of Alumina by Zirconium Segregation at the Grain Boundary. Journal of the<br>American Ceramic Society, 1997, 80, 2361-2366.                                    | 1.9  | 78        |
| 12 | Methods to calculate sintering stress of porous materials in equilibrium. Acta Materialia, 2004, 52,<br>5621-5631.                                                                | 3.8  | 71        |
| 13 | Superplasticity of Silicon Carbide. Journal of the American Ceramic Society, 1999, 82, 2916-2918.                                                                                 | 1.9  | 65        |
| 14 | Recent advances in superplastic ceramics and ceramic composites. International Materials Reviews, 1991, 36, 146-161.                                                              | 9.4  | 62        |
| 15 | The role of interface-controlled diffusion creep on superplasticity of yttria-stabilized tetragonal<br>ZrO2 polycrystals. Journal of Materials Science Letters, 1988, 7, 607-609. | O.5  | 61        |
| 16 | Fabrication of Nanograined Silicon Carbide by Ultrahighâ€Pressure Hot Isostatic Pressing. Journal of<br>the American Ceramic Society, 1999, 82, 771-773.                          | 1.9  | 59        |
| 17 | Transparent nanocrystalline bulk alumina obtained at 7.7GPa and 800°C. Scripta Materialia, 2013, 69, 362-365.                                                                     | 2.6  | 59        |
| 18 | Effects of solute ion and grain size on superplasticity of ZrO2 polycrystals. Journal of Materials<br>Science, 1991, 26, 241-247.                                                 | 1.7  | 58        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Transparent polycrystalline cubic silicon nitride. Scientific Reports, 2017, 7, 44755.                                                                                                                                                              | 1.6 | 57        |
| 20 | Anisotropic sintering stress for sintering of particles arranged in orthotropic symmetry. Acta<br>Materialia, 2009, 57, 3955-3964.                                                                                                                  | 3.8 | 55        |
| 21 | Superplasticity of ceramics. Ceramics International, 1991, 17, 153-163.                                                                                                                                                                             | 2.3 | 54        |
| 22 | FAST/SPS sintering of nanocrystalline zinc oxide—Part II: Abnormal grain growth, texture and grain anisotropy. Journal of the European Ceramic Society, 2016, 36, 1221-1232.                                                                        | 2.8 | 54        |
| 23 | Detection of Boron Segregation to Grain Boundaries in Silicon Carbide by Spatially Resolved Electron<br>Energyâ€Loss Spectroscopy. Journal of the American Ceramic Society, 1999, 82, 469-472.                                                      | 1.9 | 53        |
| 24 | Strengthening and Toughening of Silicon Nitride by Superplastic Deformation. Journal of the American Ceramic Society, 1998, 81, 713-716.                                                                                                            | 1.9 | 51        |
| 25 | Sintering through surface motion by the difference in mean curvature. Acta Materialia, 2003, 51, 4013-4024.                                                                                                                                         | 3.8 | 50        |
| 26 | High Temperature Deformation of Precursor-derived Amorphous Si–B–C–N Ceramics. Journal of the<br>European Ceramic Society, 1999, 19, 2797-2814.                                                                                                     | 2.8 | 48        |
| 27 | Equilibrium configuration of particles in sintering under constraint. Acta Materialia, 2003, 51, 641-652.                                                                                                                                           | 3.8 | 48        |
| 28 | Effect of Dispersion of ZrO <sub>2</sub> Particles on Creep of Fine-Grained<br>Al <sub>2</sub> O <sub>3</sub> . Journal of the Ceramic Society of Japan, 1988, 96, 1206-1209.                                                                       | 1.3 | 46        |
| 29 | The Piosson's ratio of engineering ceramics at elevated temperature. Journal of Materials Science<br>Letters, 1991, 10, 282-284.                                                                                                                    | 0.5 | 46        |
| 30 | Sintering force behind the viscous sintering of two particles. Acta Materialia, 2016, 109, 292-299.                                                                                                                                                 | 3.8 | 46        |
| 31 | Large-size ultrahigh strength Ni-based bulk metallic glassy matrix composites with enhanced ductility<br>fabricated by spark plasma sintering. Applied Physics Letters, 2008, 92, .                                                                 | 1.5 | 42        |
| 32 | Interface topology for distinguishing stages of sintering. Scientific Reports, 2017, 7, 11106.                                                                                                                                                      | 1.6 | 41        |
| 33 | Ceramics superplasticity. Current Opinion in Solid State and Materials Science, 1999, 4, 461-465.                                                                                                                                                   | 5.6 | 40        |
| 34 | Anisotropic shrinkage induced by particle rearrangement in sintering. Acta Materialia, 2007, 55, 4553-4566.                                                                                                                                         | 3.8 | 40        |
| 35 | Preparation of long-afterglow colloidal solution of Sr2MgSi2O7: Eu2+, Dy3+ by laser ablation in liquid. Applied Surface Science, 2011, 257, 2170-2175.                                                                                              | 3.1 | 40        |
| 36 | Microstructure and properties of ceramic particulate reinforced metallic glassy matrix composites<br>fabricated by spark plasma sintering. Materials Science and Engineering B: Solid-State Materials for<br>Advanced Technology, 2008, 148, 77-81. | 1.7 | 37        |

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic<br>activity on a titanium substrate formed by plasma electrolytic oxidation. Materials Science and<br>Engineering C, 2013, 33, 4871-4875. | 3.8 | 37        |
| 38 | Anisotropic viscosities and shrinkage rates in sintering of particles arranged in a simple orthorhombic structure. Acta Materialia, 2010, 58, 1921-1929.                                                                                | 3.8 | 35        |
| 39 | Diffusion Bonding of Zirconia/Alumina Composites. Journal of the American Ceramic Society, 1990, 73, 3476-3480.                                                                                                                         | 1.9 | 34        |
| 40 | Topological transformation of grains in three-dimensional normal grain growth. Journal of<br>Materials Research, 2001, 16, 2136-2142.                                                                                                   | 1.2 | 34        |
| 41 | Densification of Precursorâ€Derived Siâ€Câ€N Ceramics by Highâ€Pressure Hot Isostatic Pressing. Journal of the American Ceramic Society, 2002, 85, 1706-1712.                                                                           | 1.9 | 34        |
| 42 | Superplastic Si3N4 ceramics consisting of rod-shaped grains. Journal of Materials Science Letters, 1995, 14, 1369-1371.                                                                                                                 | 0.5 | 31        |
| 43 | Shrinkage and disappearance of a closed pore in the sintering of particle cluster. Acta Materialia, 2006, 54, 793-805.                                                                                                                  | 3.8 | 31        |
| 44 | Coarse pore evolution in dry-pressed alumina ceramics during sintering. Advanced Powder<br>Technology, 2016, 27, 1006-1012.                                                                                                             | 2.0 | 31        |
| 45 | The brittle to ductile transition in a Si3N4/SiC composite with a glassy grain boundary phase. Acta<br>Metallurgica Et Materialia, 1993, 41, 3203-3213.                                                                                 | 1.9 | 30        |
| 46 | Evaluation of sintering stress from 3-D visualization of microstructure: Case study of glass films sintered by viscous flow and imaged by X-ray microtomography. Acta Materialia, 2014, 66, 54-62.                                      | 3.8 | 30        |
| 47 | Microstructural evolution of electrodes in sintering of multi-layer ceramic capacitors (MLCC) observed by synchrotron X-ray nano-CT. Acta Materialia, 2021, 206, 116605.                                                                | 3.8 | 30        |
| 48 | Geometrical Microstructural Development in Superplastic Silicon Nitride with Rod-Shaped Grains.<br>Journal of the American Ceramic Society, 1998, 81, 3221-3227.                                                                        | 1.9 | 29        |
| 49 | Synthesis of Si–C–O Bulk Ceramics with Various Chemical Compositions from Polycarbosilane.<br>Journal of the American Ceramic Society, 1999, 82, 2337-2341.                                                                             | 1.9 | 27        |
| 50 | 3D multiscale-imaging of processing-induced defects formed during sintering of hierarchical powder packings. Scientific Reports, 2019, 9, 11595.                                                                                        | 1.6 | 27        |
| 51 | Compressive Deformation Properties and Microstructures in the Superplastic Y-TZP. Journal of the Ceramic Association Japan, 1986, 94, 721-725.                                                                                          | 0.2 | 26        |
| 52 | High temperature plasticity in yttria stabilised tetragonal zirconia polycrystals (Y-TZP). International<br>Materials Reviews, 2013, 58, 399-417.                                                                                       | 9.4 | 25        |
| 53 | New Oxygen-Deficient Perovskite Phase, La1-xSrxCuO3-y(0.20= <x=<0.25). 1988,="" 27,="" applied="" japanese="" journal="" l55-l56.<="" of="" physics,="" td=""><td>0.8</td><td>24</td></x=<0.25).>                                       | 0.8 | 24        |
| 54 | Cation diffusion in yttria-zirconia by molecular dynamics. Solid State Ionics, 2011, 204-205, 1-6.                                                                                                                                      | 1.3 | 24        |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Calculation of Stress Intensity Factors for SENB Specimens by Boundary Collocation Procedure.<br>Journal of the Ceramic Association Japan, 1985, 93, 479-480.                                                                                                                 | 0.2 | 23        |
| 56 | Improved creep resistance of Si3N4/SiC nanocomposites fabricated from amorphous Si-C-N precursor powder. Journal of Materials Science Letters, 1996, 15, 505-507.                                                                                                             | 0.5 | 23        |
| 57 | Effects of Atmospheric Composition on the Molecular Structure of Synthesized Silicon Oxycarbides.<br>Journal of the American Ceramic Society, 2015, 98, 3373-3380.                                                                                                            | 1.9 | 23        |
| 58 | Large increase in fracture resistance of stishovite with crack extension less than one micrometer.<br>Scientific Reports, 2015, 5, 10993.                                                                                                                                     | 1.6 | 23        |
| 59 | Fracture-induced amorphization of polycrystalline SiO2 stishovite: a potential platform for toughening in ceramics. Scientific Reports, 2014, 4, 6558.                                                                                                                        | 1.6 | 23        |
| 60 | Morphology of subsurface cracks in glass-ceramics induced by Vickers indentation observed by synchrotron X-ray multiscale tomography. Scientific Reports, 2022, 12, 6994.                                                                                                     | 1.6 | 23        |
| 61 | Ceramics superplasticity: Deformation mechanisms and microstructures. Materials Characterization, 1996, 37, 331-341.                                                                                                                                                          | 1.9 | 22        |
| 62 | Effect of grain boundary sliding on shear viscosity and viscous Poisson's ratio in macroscopic<br>shrinkage during sintering. Acta Materialia, 2011, 59, 774-784.                                                                                                             | 3.8 | 22        |
| 63 | Microstructural Evolution and Anisotropic Shrinkage in Constrained Sintering and Sinter Forging.<br>Journal of the American Ceramic Society, 2012, 95, 2389-2397.                                                                                                             | 1.9 | 22        |
| 64 | Determination of the size of representative volume element for viscous sintering. Journal of the<br>Ceramic Society of Japan, 2016, 124, 421-425.                                                                                                                             | 0.5 | 22        |
| 65 | Mechanical strength of hot-pressed Bi–Pb–Sr–Ca–Cu–O superconductor. Journal of Materials<br>Research, 1992, 7, 34-37.                                                                                                                                                         | 1.2 | 22        |
| 66 | Topological transformation of grains in superplasticity-like deformation. Acta Materialia, 2002, 50, 1177-1186.                                                                                                                                                               | 3.8 | 21        |
| 67 | Dynamic Evolution of Grainâ€Boundary Films in Liquidâ€Phase‣intered Ultrafine Silicon Carbide Material.<br>Journal of the American Ceramic Society, 2003, 86, 1753-1760.                                                                                                      | 1.9 | 21        |
| 68 | Fabrication of zirconia-alumina functionally gradient material by superplastic diffusion bonding.<br>Journal of Materials Science, 1993, 28, 5793-5799.                                                                                                                       | 1.7 | 20        |
| 69 | R-Curve Behavior and Stable Crack Growth at Elevated Temperature (1500o-1650oC) in a Si3N4/SiC<br>Nanocomposite. Journal of the American Ceramic Society, 1994, 77, 3237-3243.                                                                                                | 1.9 | 20        |
| 70 | High temperature deformation of silicon nitride ceramics with different microstructures. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996,<br>206, 45-48.                                                          | 2.6 | 20        |
| 71 | Deformation of Monoclinic ZrO <sub>2</sub> Polycrystals and<br>Y <sub>2</sub> O <sub>3</sub> â€Stabilized Tetragonal ZrO <sub>2</sub> Polycrystals below the<br>Monoclinic–Tetragonal Transition Temperature. Journal of the American Ceramic Society, 2002, 85,<br>2834-2836 | 1.9 | 20        |
| 72 | Computation of sintering stress and bulk viscosity from microtomographic images in viscous sintering of glass particles. Journal of the American Ceramic Society, 2017, 100, 867-875.                                                                                         | 1.9 | 20        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Compressive Deformation of Y <sub>2</sub> O <sub>3</sub> -Stabilized<br>ZrO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub> Composite. Journal of the Ceramic Association Japan,<br>1986, 94, 1017-1020.   | 0.2 | 19        |
| 74 | Deformation of Alumina/Titanium Carbide Composite at Elevated Temperatures. Journal of the American Ceramic Society, 1991, 74, 2258-2262.                                                               | 1.9 | 19        |
| 75 | Thermal barrier coating made of porous zirconium oxide on a nickel-based single crystal superalloy formed by plasma electrolytic oxidation. Surface and Coatings Technology, 2013, 223, 47-51.          | 2.2 | 19        |
| 76 | Sintering forces acting among particles during sintering by grainâ€boundary/surface diffusion. Journal of the American Ceramic Society, 2019, 102, 538-547.                                             | 1.9 | 19        |
| 77 | Toughening enhanced at elevated temperatures in an alumina/zirconia dual-phase matrix composite reinforced with silicon carbide whiskers. Journal of the European Ceramic Society, 2013, 33, 3157-3163. | 2.8 | 18        |
| 78 | Picosecond amorphization of SiO <sub>2</sub> stishovite under tension. Science Advances, 2017, 3, e1602339.                                                                                             | 4.7 | 17        |
| 79 | Effect of Amount of Boron Doping on Compression Deformation of Fineâ€Grained Silicon Carbide at<br>Elevated Temperature. Journal of the American Ceramic Society, 2004, 87, 1525-1529.                  | 1.9 | 16        |
| 80 | Tensorâ€Virial Equation for Deformation of a Particle in Viscous Sintering. Journal of the American<br>Ceramic Society, 2012, 95, 2785-2787.                                                            | 1.9 | 16        |
| 81 | Mechanics of viscous sintering on the micro- and macro-scale. Acta Materialia, 2013, 61, 239-247.                                                                                                       | 3.8 | 16        |
| 82 | Superplasticityâ€like Deformation of Nanocrystalline Monoclinic Zirconia at Elevated Temperatures.<br>Journal of the American Ceramic Society, 2004, 87, 1122-1125.                                     | 1.9 | 15        |
| 83 | Influence of binder layer of spray-dried granules on occurrence and evolution of coarse defects in alumina ceramics during sintering. Journal of the European Ceramic Society, 2018, 38, 1846-1852.     | 2.8 | 15        |
| 84 | Tensile Ductility of Liquid-Phase Sintered β-Silicon Carbide at Elevated Temperature. Materials Science<br>Forum, 1999, 304-306, 507-512.                                                               | 0.3 | 14        |
| 85 | Sintering force behind shape evolution by viscous flow. Journal of the European Ceramic Society, 2015, 35, 1119-1122.                                                                                   | 2.8 | 14        |
| 86 | Evaluation of Crack Propagation in Hydroxyapatite by Double-Torsion Method in Air, Water and<br>Toluene. Journal of the Ceramic Society of Japan, 1995, 103, 648-652.                                   | 1.3 | 13        |
| 87 | High temperature plastic anisotropy of Y2O3 partiallystabilized ZrO2 single crystals. Journal of the<br>European Ceramic Society, 2002, 22, 2609-2613.                                                  | 2.8 | 13        |
| 88 | Microstructure and superconducting properties of hot-pressed Bi–Pb–Sr–Ca–Cu–O thick film.<br>Journal of Materials Research, 1991, 6, 1425-1432.                                                         | 1.2 | 12        |
| 89 | Molecular Dynamics Simulation of the Model Grain Boundary Structure of Polycrystalline Materials.<br>Molecular Simulation, 1996, 18, 179-192.                                                           | 0.9 | 12        |
| 90 | High temperature plastic deformation of a tetragonal Y2O3-stabilized ZrO2 single crystals. Scripta<br>Materialia, 2001, 44, 2551-2555.                                                                  | 2.6 | 12        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Sintering forces in equilibrium and non-equilibrium states during sintering of two particles. Science and Technology of Advanced Materials, 2004, 5, 521-525.                                                                           | 2.8 | 12        |
| 92  | Compression Deformation Mechanism of Silicon Carbide: I, Fineâ€Grained Boron―and Carbonâ€Doped<br>βâ€5ilicon Carbide Fabricated by Hot Isostatic Pressing. Journal of the American Ceramic Society, 2004, 87,<br>1919-1926.             | 1.9 | 12        |
| 93  | High-temperature deformation of α-SiAlON nanoceramics without additives. Scripta Materialia, 2007, 56,<br>871-874.                                                                                                                      | 2.6 | 12        |
| 94  | Integrated molding of nanocrystalline tungsten carbide powder with stainless steel. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 145-148.                                          | 1.7 | 12        |
| 95  | Direct observation of sintering mechanics of a single grain boundary. Acta Materialia, 2012, 60, 507-516.                                                                                                                               | 3.8 | 12        |
| 96  | Viscous Poisson's ratio, bulk and shear viscosity during electrical field assisted sintering of polycrystalline ceria. Scripta Materialia, 2020, 178, 240-243.                                                                          | 2.6 | 12        |
| 97  | 63Cu and 65Cu NMR in a Single Crystal of K2CuF4. Journal of the Physical Society of Japan, 1981, 50, 1109-1118.                                                                                                                         | 0.7 | 11        |
| 98  | Intragranular crack deflection and crystallographic slip in Si3N4/SiC nano-composites. Journal of the European Ceramic Society, 1993, 11, 431-438.                                                                                      | 2.8 | 11        |
| 99  | Superplastic forging of silicon nitride ceramics with anisotropic microstructure control. Journal of<br>Materials Science Letters, 1997, 17, 45-47.                                                                                     | 0.5 | 11        |
| 100 | A Microscopic Model of Interfaceâ€Reactionâ€Controlled Sintering of Spherical Particles of Different<br>Phases. Journal of the American Ceramic Society, 2009, 92, 1663-1671.                                                           | 1.9 | 11        |
| 101 | Optical Properties of Afterglow Nanoparticles : , Capped with Polyethylene Glycol. Advances in<br>Optical Technologies, 2012, 2012, 1-6.                                                                                                | 0.8 | 11        |
| 102 | High-strain-rate superplasticity in nanocrystalline silicon nitride ceramics under compression.<br>Scripta Materialia, 2015, 103, 22-25.                                                                                                | 2.6 | 11        |
| 103 | Diffusion bonding of ceramics: mullite, ZrO2-toughened mullite. Journal of Materials Science, 1991, 26, 4985-4990.                                                                                                                      | 1.7 | 10        |
| 104 | High-temperature compressive deformation of β-SiAlON polycrystals containing minimum amount of<br>intergranular glass phase. Materials Science and Engineering B: Solid-State Materials for Advanced<br>Technology, 2008, 148, 203-206. | 1.7 | 10        |
| 105 | Representative indentation elastic modulus evaluated by unloading of nanoindentation made with a point sharp indenter. Mechanics of Materials, 2015, 83, 66-71.                                                                         | 1.7 | 10        |
| 106 | Surface tension-pressure superposition principle for anisotropic shrinkage of an ellipsoidal pore in viscous sintering. Journal of the European Ceramic Society, 2018, 38, 4283-4289.                                                   | 2.8 | 10        |
| 107 | Joining of Hot-Pressed Bi-Pb-Sr-Ca-Cu-O Superconductor. Japanese Journal of Applied Physics, 1989, 28, L1740-L1741.                                                                                                                     | 0.8 | 9         |
| 108 | Superplasticity of mullite-zirconia composite. Journal of Materials Science, 1992, 27, 3575-3580.                                                                                                                                       | 1.7 | 9         |

| #   | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Fabrication of polycarbosilane-derived SiC bulk ceramics by carbothermic reduction. Scripta<br>Materialia, 1999, 12, 175-178.                                                                                                                          | 0.5 | 9         |
| 110 | Molecular Dynamics Simulation of the Grain Growth in Nano-Grained Metallic Polycrystals. Materials Transactions, 2001, 42, 2266-2269.                                                                                                                  | 0.4 | 9         |
| 111 | Effect of chemical composition of intergranular glass on superplastic compressive deformation of β-silicon nitride. Journal of the European Ceramic Society, 2006, 26, 1069-1074.                                                                      | 2.8 | 9         |
| 112 | Pore channel closure in sintering of a ring of three spheres. Journal of the European Ceramic Society, 2007, 27, 3365-3370.                                                                                                                            | 2.8 | 9         |
| 113 | Enhancement of high-temperature deformation in fine-grained silicon carbide with Al doping.<br>Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 261-264.                                                 | 1.7 | 9         |
| 114 | Superplasticity of Ceramics. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1989, 75, 389-395.                                                                                                                                      | 0.1 | 9         |
| 115 | Particle size, shape and orientation distributions: Aeneral spheroid problem and application to deformed Si3N4microstructures. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1996, 74, 215-228. | 0.7 | 8         |
| 116 | Evaluation of effects of crack deflection and grain bridging on toughening of nanocrystalline SiO2 stishovite. Journal of the European Ceramic Society, 2017, 37, 5113-5117.                                                                           | 2.8 | 8         |
| 117 | A model of crack healing of glass by viscous flow at elevated temperatures. Journal of the American<br>Ceramic Society, 2019, 102, 1373-1378.                                                                                                          | 1.9 | 8         |
| 118 | Two step dependence of critical temperature on oxygen content for the Bi-Pb-Sr-Ca-Cu-O superconductor. Physica C: Superconductivity and Its Applications, 1991, 181, 331-334.                                                                          | 0.6 | 7         |
| 119 | Intergranular pinning potential and transport current path in Biî—,Pbî—,Srî—,Caî—,Cuî—,O polycrystal superconductor. Physica C: Superconductivity and Its Applications, 1991, 185-189, 2213-2214.                                                      | 0.6 | 7         |
| 120 | Title is missing!. Journal of Materials Synthesis and Processing, 1998, 6, 393-399.                                                                                                                                                                    | 0.3 | 7         |
| 121 | Effect of Oxygen Segregation at Grain Boundaries on Deformation of B, C-Doped Silicon Carbides at<br>Elevated Temperatures. Journal of the American Ceramic Society, 2005, 88, 1558-1563.                                                              | 1.9 | 7         |
| 122 | Influence of Particle Arrangement on Coarsening during Sintering of Three Spherical Particles.<br>Journal of the Ceramic Society of Japan, 2006, 114, 974-978.                                                                                         | 1.3 | 7         |
| 123 | Three-dimensional computer study of rearrangement during liquid phase sintering. Mathematical and Computer Modelling, 2012, 55, 1251-1262.                                                                                                             | 2.0 | 7         |
| 124 | Tensor virial equation of evolving surfaces in sintering of aggregates of particles by diffusion. Acta<br>Materialia, 2013, 61, 4103-4112.                                                                                                             | 3.8 | 7         |
| 125 | Strength and toughness of nanocrystalline SiO2 stishovite toughened by fracture-induced amorphization. Acta Materialia, 2017, 124, 316-324.                                                                                                            | 3.8 | 7         |
| 126 | Effect of the Elastic Deformation of a Point-Sharp Indenter on Nanoindentation Behavior. Materials, 2017, 10, 270.                                                                                                                                     | 1.3 | 7         |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Comparison between sinter forging and X-ray microtomography methods for determining sintering stress and bulk viscosity. Journal of the European Ceramic Society, 2018, 38, 2053-2058.                                                       | 2.8 | 7         |
| 128 | Sintering mechanics of ceramics: a short review. Materials Today: Proceedings, 2019, 16, 4-13.                                                                                                                                               | 0.9 | 7         |
| 129 | Modelling of elimination of strength-limiting defects by pressure-assisted sintering at low stress levels. Journal of the European Ceramic Society, 2021, 41, 202-210.                                                                       | 2.8 | 7         |
| 130 | Influence of magnetic field on transport current path in Biî—,Pbî—,Srî—,Caî—,Cuî—,O granular superconductor.<br>Physica C: Superconductivity and Its Applications, 1991, 174, 335-339.                                                       | 0.6 | 6         |
| 131 | Deformation Conditions of $\hat{l}^2$ -SiAlON to Achieve Large Superplastic Elongation. Journal of the Ceramic Society of Japan, 1998, 106, 1040-1042.                                                                                       | 1.3 | 6         |
| 132 | Dynamics of Grain Boundary Network in Ceramics Superplasticity. Journal of the Ceramic Society of Japan, 2004, 112, 472-476.                                                                                                                 | 1.3 | 6         |
| 133 | Development of Creep-Resistant Tungsten Carbide Copper Cemented Carbide. Materials Transactions, 2009, 50, 1250-1254.                                                                                                                        | 0.4 | 6         |
| 134 | Thermalâ€ <b>6</b> hock Fracture and Damage Resistance Improved by Whisker Reinforcement in Alumina Matrix<br>Composite. International Journal of Applied Ceramic Technology, 2016, 13, 653-661.                                             | 1.1 | 6         |
| 135 | Representative indentation yield stress evaluated by behavior of nanoindentations made with a point sharp indenter. Mechanics of Materials, 2016, 92, 1-7.                                                                                   | 1.7 | 6         |
| 136 | Thermal expansion and P-V-T equation of state of cubic silicon nitride. Journal of the European<br>Ceramic Society, 2019, 39, 3627-3633.                                                                                                     | 2.8 | 6         |
| 137 | Micromechanics of formation and shrinkage of a closed pore in sintering by coupled grain boundary/surface diffusion. Journal of the European Ceramic Society, 2019, 39, 2952-2959.                                                           | 2.8 | 6         |
| 138 | Anisotropic microstructural evolution and coarsening in free sintering and constrained sintering of metal film by using FIB-SEM tomography. Acta Materialia, 2021, 215, 117087.                                                              | 3.8 | 6         |
| 139 | Superplasticity of Non-Oxide Ceramics. Materials Research Society Symposia Proceedings, 1990, 196, 349.                                                                                                                                      | 0.1 | 5         |
| 140 | High Temperature Deformation of Ceramics Simulated by Molecular Dynamics. Materials Science Forum, 1997, 243-245, 351-356.                                                                                                                   | 0.3 | 5         |
| 141 | Change in stress, stress sensitivity and activation energy during superplastic deformation of silicon<br>nitride. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 1999, 268, 141-146. | 2.6 | 5         |
| 142 | Statistics of grain disappearance in three-dimensional normal grain growth. The Philosophical<br>Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic<br>Properties, 2001, 81, 517-524.          | 0.6 | 5         |
| 143 | Evolution of Microstructure and Intergranular Glass Chemistry in Plastically Deformed<br>Nanocrystalline Si <sub>3</sub> N <sub>4</sub> Ceramics. Journal of the American Ceramic Society,<br>2015, 98, 178-185.                             | 1.9 | 5         |
| 144 | Domain coarsening in viscous sintering as a result of topological pore evolution. Journal of the European Ceramic Society, 2022, 42, 729-733.                                                                                                | 2.8 | 5         |

| #   | Article                                                                                                                                                                                                                                                                                       | lF                                     | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|
| 145 | The relation between internal friction and tensile creep deformation on alumina ceramics. Journal of Alloys and Compounds, 1994, 211-212, 361-364.                                                                                                                                            | 2.8                                    | 4         |
| 146 | High Temperature Deformation of Precursor Derived Si-C-N Ceramics. Materials Science Forum, 1999, 304-306, 501-506.                                                                                                                                                                           | 0.3                                    | 4         |
| 147 | Effect of internal stress disturbance on the stress-induced transformation toughening of an alumina/zirconia dual-phase composite. Philosophical Magazine, 2004, 84, 3741-3754.                                                                                                               | 0.7                                    | 4         |
| 148 | Low temperature heat capacity measurements of β-Si3N4 and γ-Si3N4: Determination of the equilibrium phase boundary between β-Si3N4 and γ-Si3N4. Journal of the European Ceramic Society, 2020, 40, 6309-6315.                                                                                 | 2.8                                    | 4         |
| 149 | Thermal instability of Bi-Pb-Sr-Ca-Cu-O superconductor around 650?C. Journal of Materials Science, 1992, 27, 3642-3644.                                                                                                                                                                       | 1.7                                    | 3         |
| 150 | Amorphous Grain Boundary in Superplastic Ceramics. Materials Science Forum, 1997, 243-245, 337-344.                                                                                                                                                                                           | 0.3                                    | 3         |
| 151 | Indentation cracks in superplastically deformed silicon nitride consisting of strongly aligned<br>rod-shaped grains. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 1998, 244, 161-167.                                               | 2.6                                    | 3         |
| 152 | EVALUATION METHODS FOR PROPERTIES OF NANOSTRUCTURED BODY. , 2008, , 317-383.                                                                                                                                                                                                                  |                                        | 3         |
| 153 | Effect of <scp>CaO</scp> Addition on Compressive Deformation of <scp>S</scp> ilicon<br><scp>N</scp> itride Ceramic with<br><scp>Y</scp> â€ <scp>Mg</scp> á€ <scp>a€<scp>Si</scp>á€<scp>Si</scp>â€<scp>C</scp>â€<scp>C</scp>â€<scp>Complete Ceramic Technology, 2013, 10, 756-763.</scp></scp> | → <sup>1,1</sup><br>> <scp>N&lt;</scp> | /sc͡p>    |
| 154 | Superplastic Diffusion Bonding in Ceramics. Journal of the Ceramic Society of Japan, 1992, 100, 1279-1284.                                                                                                                                                                                    | 1.3                                    | 2         |
| 155 | Diffusion bonding of Al2O3/TiC composite. Journal of Materials Science Letters, 1994, 13, 1375-1376.                                                                                                                                                                                          | 0.5                                    | 2         |
| 156 | Crack formation and oxidation in superplastically deformed Si3N4. Journal of Materials Science, 1996, 31, 5499-5504.                                                                                                                                                                          | 1.7                                    | 2         |
| 157 | Deformation Behavior of SiO <sub>2</sub> Doped Nanocrystalline Monoclinic Zirconia at Low<br>Temperatures. Key Engineering Materials, 2006, 317-318, 433-436.                                                                                                                                 | 0.4                                    | 2         |
| 158 | Comment on "Local vs. global approach in the analysis of sintering kinetics― Scripta Materialia, 2010,<br>62, 117-119.                                                                                                                                                                        | 2.6                                    | 2         |
| 159 | Determination of sintering stress and bulk viscosity from sinter-forging and X-ray microtomography methods: a Review. Materials Today: Proceedings, 2019, 16, 42-48.                                                                                                                          | 0.9                                    | 2         |
| 160 | Rigid body motion of multiple particles in solid-state sintering. Acta Materialia, 2022, 235, 118092.                                                                                                                                                                                         | 3.8                                    | 2         |
| 161 | R-curve measurement of silicon nitride ceramics using single-edge notched beam specimens. Journal of Materials Science, 1994, 29, 5183-5187.                                                                                                                                                  | 1.7                                    | 1         |
| 162 | Microstructures and Mechanical Properties of Anisotropic Silicon Nitride Produced by Superplastic Deformation. Key Engineering Materials, 1999, 161-163, 555-558.                                                                                                                             | 0.4                                    | 1         |

| #   | Article                                                                                                                                                                                                                                                          | IF         | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 163 | Movement of Nanocrystalline Grains in Superplasticity. Key Engineering Materials, 1999, 166, 153-156.                                                                                                                                                            | 0.4        | 1         |
| 164 | A Molecular Dynamics Study of Large Deformation of Nanocrystalline Materials. Materials Science<br>Forum, 2001, 357-359, 571-576.                                                                                                                                | 0.3        | 1         |
| 165 | Compressive Deformation of Partially Crystallized Amorphous Si-B-C-N Ceramics at Elevated Temperatures. Materials Transactions, 2003, 44, 226-231.                                                                                                               | 0.4        | 1         |
| 166 | Compressive Deformation of Precursor-Derived Si-C-N Ceramics at Elevated Temperatures. Materials Transactions, 2003, 44, 794-797.                                                                                                                                | 0.4        | 1         |
| 167 | Dynamics of Grain Boundary Networks in Superplasticity. Materials Science Forum, 2004, 447-448, 49-54.                                                                                                                                                           | 0.3        | 1         |
| 168 | Indentation Size Effect on the Hardness of Zirconia Polycrystals. , 2005, , 13-20.                                                                                                                                                                               |            | 1         |
| 169 | å¤çµæ™¶ä½"ã®ç²'界ãfãffãf^ãf~ãf¼ã, ãf€ã,¤fŠãfŸã, ã,1 è¶å¦'性ãf»ç²'æ^é•∙ãf»ç,,¼çµ• Materia Japan, 2                                                                                                                                                                  | 2006,145,6 | 544-647.  |
| 170 | Effect of Chemical Composition of Intergranular Glass on Superplastic Deformation of β-Silicon<br>Nitride. Key Engineering Materials, 2006, 317-318, 399-402.                                                                                                    | 0.4        | 1         |
| 171 | Bulk Consolidation of Non-Oxide Ceramic Powders Derived from Polymer Precursors. Key Engineering Materials, 2006, 317-318, 15-18.                                                                                                                                | 0.4        | 1         |
| 172 | Superplastic Deformation of Silicon Nitride Nanocomposite at High Strain Rates. Key Engineering<br>Materials, 2006, 317-318, 403-406.                                                                                                                            | 0.4        | 1         |
| 173 | Interplay between Surface and Grain Boundary in Sintering. Materials Science Forum, 2007, 558-559, 1029-1034.                                                                                                                                                    | 0.3        | 1         |
| 174 | Superplastic Flow of Silicon Nitride-Based Nanocomposite at High Strain Rates. Materials Science<br>Forum, 2007, 551-552, 597-600.                                                                                                                               | 0.3        | 1         |
| 175 | Three-Dimensional Simulation of Coarsening and Grain Growth in Sintering. Materials Science Forum, 2007, 539-543, 2359-2364.                                                                                                                                     | 0.3        | 1         |
| 176 | New processing method for tungsten carbide nano-crystalline particles and nano structural carbon via polyacrylonitrile gasification. Journal of the Ceramic Society of Japan, 2014, 122, 570-573.                                                                | 0.5        | 1         |
| 177 | Mechanics of shape evolution of particle aggregates in viscous sintering. Journal of the European<br>Ceramic Society, 2021, 41, 797-810.                                                                                                                         | 2.8        | 1         |
| 178 | Numerical analysis of point-sharp indentation-load relaxation simulated using the finite-element<br>method to characterize the power-law creep deformation of a visco-elastoplastic solid. International<br>Journal of Solids and Structures, 2022, 238, 111417. | 1.3        | 1         |
| 179 | Anisotropy and anomalous temperature dependence of Josephson lower critical field in grain-oriented Bi-Pb-Sr-Ca-Cu-O superconductor. Physica C: Superconductivity and Its Applications, 1991, 177, 135-137.                                                      | 0.6        | 0         |
| 180 | Superplasticity in Si <sub>3</sub> N <sub>4</sub> Associated with Rod-like Grain<br>Alignment. Materials Science Forum, 1997, 243-245, 115-124.                                                                                                                  | 0.3        | 0         |

| #   | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | High Temperature Compressive Deformation Behavior of Superplastic B, C-SiC. Materials Science<br>Forum, 1999, 304-306, 495-500.                                                                                                                   | 0.3 | 0         |
| 182 | Ceramics Superplasticity. Materials Research Society Symposia Proceedings, 1999, 601, 163.                                                                                                                                                        | 0.1 | 0         |
| 183 | Ultrahigh-temperature deformation of high-purity HIPed Si3N4. Journal of Materials Science, 2001, 36, 1459-1467.                                                                                                                                  | 1.7 | 0         |
| 184 | Effects of Temperature and Chemical Composition of Intergranular Glass on Dihedral Angle of<br>Glass-Doped 3Y-TZP. Journal of the Ceramic Society of Japan, 2004, 112, 661-664.                                                                   | 1.3 | 0         |
| 185 | Grain Boundary Dynamics in Ceramics Superplasticity. , 2006, , 297-314.                                                                                                                                                                           |     | 0         |
| 186 | High-Temperature Deformation of Si-C-N Monoliths Containing Residual Amorphous Phase Derived from Polyvinylsilazane. Journal of the Ceramic Society of Japan, 2006, 114, 575-579.                                                                 | 1.3 | 0         |
| 187 | Dedicated to Professor Günter Petzow on the Occasion of his 80th Birthday. Journal of the Ceramic<br>Society of Japan, 2006, 114, P1-P2.                                                                                                          | 1.3 | 0         |
| 188 | Evaluation of Thermal Stability of Porous Material by Sintering Stress. Key Engineering Materials, 2006, 317-318, 683-688.                                                                                                                        | 0.4 | 0         |
| 189 | High-Temperature Compressive Deformation of SiAlON Polycrystals Prepared without Additives. Key<br>Engineering Materials, 2008, 403, 117-120.                                                                                                     | 0.4 | Ο         |
| 190 | Plasticity of Fe-Oxypnictides Superconductor. Journal of the Physical Society of Japan, 2008, 77, 125-126.                                                                                                                                        | 0.7 | 0         |
| 191 | Low temperature bonding using sub-micron Au particles for wafer-level MEMS packaging. , 2012, , .                                                                                                                                                 |     | Ο         |
| 192 | Development of Superplastic Ceramics. , 2013, , 765-771.                                                                                                                                                                                          |     | 0         |
| 193 | Hafnia-silicon carbide nanocomposites II: Measurements of the residual stress. Journal of the European Ceramic Society, 2016, 36, 937-942.                                                                                                        | 2.8 | Ο         |
| 194 | Evaluation of Macroscopic Mechanical Properties from 3-D Visualization of Microstructure in<br>Sintering. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder<br>Metallurgy, 2017, 64, 495-500.                         | 0.1 | 0         |
| 195 | Transformation Toughening by Fracture-Induced Amorphization in Nanopolycrystalline Stishovite.<br>Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2018, 28, 170-176.                                             | 0.1 | Ο         |
| 196 | Effect of the friction between a point-sharp indenter and an indented elastoplastic solid on the load and depth sensing indentation. Materials Today: Proceedings, 2019, 16, 119-123.                                                             | 0.9 | 0         |
| 197 | Millennial Special Leading Papers on Ceramics in the 20 <sup>th</sup> Century: the Best of JCerSJ Compressive Deformation Properties and Microstructure in the Superplastic Y-TZP. Journal of the Ceramic Society of Japan, 2000, 108, S101-S106. | 1.3 | 0         |
| 198 | Nano-scale Joining and Cutting Technologies Development of Nanocrystalline Ceramics: Application to<br>Superplastic Diffusion Bonding. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2006, 75,<br>171-174.                             | 0.0 | 0         |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Quasi-equilibrium sintering of particle clusters containing Bernal holes. International Journal of<br>Materials Research, 2006, 97, 670-675.                                                                                  | 0.1 | 0         |
| 200 | Micro-Mechanical Principle of Sintering in Particle-Scale. Funtai Oyobi Fummatsu Yakin/Journal of the<br>Japan Society of Powder and Powder Metallurgy, 2009, 56, 611-618.                                                    | 0.1 | 0         |
| 201 | Preparation of the High Density and Fine-Grained YBa2Cu3O7-y by Capsule Hip Method. , 1992, , 393-398.                                                                                                                        |     | 0         |
| 202 | Superplasticity. Journal of the Society of Mechanical Engineers, 1992, 95, 864-865.                                                                                                                                           | 0.0 | 0         |
| 203 | Solution-Precipitation Creep Model for Superplastic Ceramics with Intergranular Liquid Film. , 1995, , 269-277.                                                                                                               |     | 0         |
| 204 | Tensile and Compressive Deformation of the Fine-Grained YBa2Cu3O6+x Ceramics. , 1995, , 657-660.                                                                                                                              |     | 0         |
| 205 | Clarification of the Relationship between the Microscopic Powder Packing and the Macroscopic<br>Shrinkage during Sintering by using 3D Tomography. Hosokawa Powder Technology Foundation<br>ANNUAL REPORT, 2016, 24, 144-147. | 0.0 | 0         |
| 206 | Microstructure Design for Oxide/Non-oxide Ceramics for Structural Applications. , 2019, , 135-144.                                                                                                                            |     | 0         |
| 207 | Evaluation of Macroscopic Mechanical Properties from 3-D Visualization of Microstructure in<br>Sintering. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder<br>Metallurgy, 2019, 66, 604-610.     | 0.1 | 0         |