Alidad Amirfazli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6410734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robust superhydrophobic fabric via UV-accelerated atmospheric deposition of polydopamine and silver nanoparticles for solar evaporation and water/oil separation. Chemical Engineering Journal, 2022, 429, 132539.	6.6	56
2	Effect of condensation on surface contact angle. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127739.	2.3	4
3	lce imaging in aircraft anti-icing fluid films using polarized light. Cold Regions Science and Technology, 2022, 194, 103459.	1.6	4
4	Novel SLIPS based on the photo-thermal MOFs with enhanced anti-icing/de-icing properties. RSC Advances, 2022, 12, 13792-13796.	1.7	4
5	Recent progress in stimulus-responsive superhydrophobic surfaces. Progress in Organic Coatings, 2022, 168, 106877.	1.9	19
6	Puncture of a Viscous Liquid Film Due to Droplet Falling. Fluids, 2022, 7, 196.	0.8	0
7	Anti-icing fluid performance on substrates with different thermal conductivity and roughness. Cold Regions Science and Technology, 2022, 202, 103630.	1.6	0
8	Sprayable, Superhydrophobic, Electrically, and Thermally Conductive Coating. Advanced Materials Interfaces, 2021, 8, 1902110.	1.9	21
9	Polysiloxane as icephobic materials – The past, present and the future. Chemical Engineering Journal, 2021, 405, 127088.	6.6	83
10	One-step fabrication of transparent superhydrophobic surface. Applied Surface Science, 2021, 542, 148534.	3.1	47
11	lcing of static and high-speed water droplets on superhydrophobic surface. Materials Letters, 2021, 285, 129048.	1.3	12
12	Viscoelastic liquid bridge breakup and liquid transfer between two surfaces. Journal of Colloid and Interface Science, 2021, 582, 1251-1256.	5.0	5
13	Conductive Coating: Sprayable, Superhydrophobic, Electrically, and Thermally Conductive Coating (Adv. Mater. Interfaces 2/2021). Advanced Materials Interfaces, 2021, 8, 2170008.	1.9	2
14	Receding Phase and Rebound Behavior for Drop Impact onto an Ultrathin Film. Langmuir, 2021, 37, 3849-3857.	1.6	6
15	Durable Superhydrophobic Wood via One-Step Immersion in Composite Silane Solution. ACS Omega, 2021, 6, 7266-7274.	1.6	31
16	Droplet Control Based on Pinning and Substrate Wettability. Langmuir, 2021, 37, 4248-4255.	1.6	17
17	Determining transient heat transfer coefficient for dropwise condensation in the presence of an air flow. International Journal of Heat and Mass Transfer, 2021, 173, 121278.	2.5	10
18	Energy of a Drop Required to Break a Liquid Film. Langmuir, 2021, 37, 10433-10438.	1.6	1

#	Article	IF	CITATIONS
19	Unexpected Superhydrophobicity on a Wide Range of Substrates via a One-step Immersion in Aqueous Solution without Hydrophobic Agent. Chemistry Letters, 2021, 50, 1601-1603.	0.7	1
20	Preparations of versatile polytetrafluoroethylene superhydrophobic surfaces using the femtosecond laser technology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127441.	2.3	17
21	Water and mildew proof SiO ₂ & ZnO/silica sol superhydrophobic composite coating on a circuit board. RSC Advances, 2021, 11, 21862-21869.	1.7	6
22	Anti-icing fluids interaction with surfaces: Ice protection and wettability change. International Communications in Heat and Mass Transfer, 2021, 129, 105698.	2.9	8
23	Spray-On Nanocomposite Coatings: Wettability and Conductivity. Langmuir, 2020, 36, 11393-11410.	1.6	32
24	Unexpected superhydrophobic polydopamine on cotton fabric. Progress in Organic Coatings, 2020, 147, 105777.	1.9	11
25	Methyltrimethoxysilane as a multipurpose chemical for durable superhydrophobic cotton fabric. Progress in Organic Coatings, 2020, 146, 105700.	1.9	30
26	Reproducibility of superhydrophobic and oleophobic polymeric micro surface topographies. Surface Topography: Metrology and Properties, 2020, 8, 045010.	0.9	6
27	Droplet impact onto a solid sphere in mid-air: Effect of viscosity, gas density, and diameter ratio on impact outcomes. Physics of Fluids, 2020, 32, .	1.6	21
28	Effect of initial wetting state on plastron recovery through heating. International Journal of Heat and Mass Transfer, 2020, 156, 119705.	2.5	17
29	Diverse perspectives on interdisciplinarity from Members of the College of the Royal Society of Canada. Facets, 2020, 5, 138-165.	1.1	19
30	3D printed electro-thermal anti- or de-icing system for composite panels. Cold Regions Science and Technology, 2019, 166, 102844.	1.6	43
31	Wetting Transition on Textured Surfaces: A Thermodynamic Approach. Journal of Physical Chemistry C, 2019, 123, 23976-23986.	1.5	31
32	DROP IMPACT ONTO A CANTILEVER BEAM: BEHAVIOR OF THE LAMELLA AND FORCE MEASUREMENT. Interfacial Phenomena and Heat Transfer, 2019, 7, 85-96.	0.3	8
33	Droplet impact: Viscosity and wettability effects on splashing. Journal of Colloid and Interface Science, 2019, 553, 22-30.	5.0	89
34	Spreading of low-viscous liquids on a stationary and a moving surface. Experiments in Fluids, 2019, 60, 1.	1.1	15
35	Shedding of a pair of sessile droplets. International Journal of Multiphase Flow, 2019, 110, 59-68.	1.6	10
36	Drop impact onto semi-infinite solid surfaces with different wettabilities. Physical Review Fluids, 2019, 4, .	1.0	5

3

#	Article	lF	CITATIONS
37	Contact angle measurement with a smartphone. Review of Scientific Instruments, 2018, 89, 035117.	0.6	46
38	Shedding of multiple sessile droplets by an airflow. Physics of Fluids, 2018, 30, .	1.6	15
39	Sessile drop evaporation under an electric field. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 580-585.	2.3	24
40	Fabrication and Characterization of Polystyrene Colloidal Photonic Crystals on Soft Sodium Alginate Film. Journal of Nanoelectronics and Optoelectronics, 2018, 13, 472-478.	0.1	2
41	Contact angles and wettability: towards common and accurate terminology. Surface Innovations, 2017, 5, 3-8.	1.4	328
42	Motion of a liquid bridge between nonparallel surfaces. Journal of Colloid and Interface Science, 2017, 492, 218-228.	5.0	15
43	Understanding the drop impact on moving hydrophilic and hydrophobic surfaces. Soft Matter, 2017, 13, 2040-2053.	1.2	42
44	Liquid bridge as a tunable-focus cylindrical liquid lens. Applied Physics Letters, 2017, 110, .	1.5	10
45	Impact of particle-laden drops: Particle distribution on the substrate. Journal of Colloid and Interface Science, 2017, 490, 108-118.	5.0	19
46	Asymmetric Spreading of a Drop upon Impact onto a Surface. Langmuir, 2017, 33, 5957-5964.	1.6	35
47	Stability of a liquid bridge between nonparallel hydrophilic surfaces. Journal of Colloid and Interface Science, 2017, 492, 207-217.	5.0	26
48	Drop impact onto a thin film: Miscibility effect. Physics of Fluids, 2017, 29, .	1.6	35
49	Surface tension measurement with a smartphone using a pendant drop. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 213-217.	2.3	19
50	Behavior of a Liquid Bridge between Nonparallel Hydrophobic Surfaces. Langmuir, 2017, 33, 14674-14683.	1.6	11
51	Robust superhydrophobic coatings from modified siloxane resin. Surface Innovations, 2017, 5, 203-210.	1.4	6
52	Droplet impact onto a solid sphere: Effect of wettability and impact velocity. Physics of Fluids, 2017, 29, .	1.6	101
53	Resolving an ostensible inconsistency in calculating the evaporation rate of sessile drops. Advances in Colloid and Interface Science, 2017, 243, 121-128.	7.0	14
54	IMPACT OF PARTICLE-LADEN DROPS: SPLASHING CRITERION. Atomization and Sprays, 2017, 27, 395-406.	0.3	6

#	Article	IF	CITATIONS
55	Reversible transition between superhydrophobicity and superhydrophilicity of a silver surface. Surface and Coatings Technology, 2016, 294, 47-53.	2.2	18
56	Fabrication of water-repellent surfaces on galvanized steel. RSC Advances, 2016, 6, 71970-71976.	1.7	15
57	An experimental study for impact of a drop onto a particle in mid-air: The influence of particle wettability. Journal of Fluids and Structures, 2016, 66, 282-292.	1.5	22
58	Influence of Superhydrophobic Properties on Deicing. Journal of Engineering Physics and Thermophysics, 2016, 89, 1476-1481.	0.2	7
59	Pneumatic drop generator: Liquid pinch-off and velocity of single droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 204-213.	2.3	13
60	How pinning and contact angle hysteresis govern quasi-static liquid drop transfer. Soft Matter, 2016, 12, 1998-2008.	1.2	49
61	Anti-icing properties of superhydrophobic ZnO/PDMS composite coating. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	170
62	Washable and antibacterial superhydrophbic fabric. Applied Surface Science, 2016, 364, 81-85.	3.1	47
63	CHAPTER 11. Fundamentals of Anti-Icing Surfaces. RSC Soft Matter, 2016, , 319-346.	0.2	12
64	Dislodging a sessile drop by a high-Reynolds-number shear flow at subfreezing temperatures. Physical Review E, 2015, 92, 023007.	0.8	36
65	Effects of surface wettability on fast liquid transfer. Physics of Fluids, 2015, 27, .	1.6	31
66	Effects of Prolonged Exposure to UV and Water on Super-Hydrophobic Surfaces at Ambient and Icing Conditions. , 2015, , .		0
67	Complex Drop Impact Morphology. Langmuir, 2015, 31, 9833-9844.	1.6	38
68	Fast Liquid Transfer between Surfaces: Breakup of Stretched Liquid Bridges. Langmuir, 2015, 31, 11470-11476.	1.6	34
69	Effect of contact angle hysteresis on breakage of a liquid bridge. European Physical Journal: Special Topics, 2015, 224, 277-288.	1.2	5
70	Contact angles of surfactant solutions on heterogeneous surfaces. Physical Chemistry Chemical Physics, 2015, 17, 5574-5585.	1.3	12
71	Shedding of Water Drops from a Surface under Icing Conditions. Langmuir, 2015, 31, 9340-9347.	1.6	41
72	Runback ice formation mechanism on hydrophilic and superhydrophobic surfaces. Cold Regions Science and Technology, 2015, 109, 53-60.	1.6	42

#	Article	IF	CITATIONS
73	INVESTIGATION OF WETTING BEHAVIOR ON PATTERNED SURFACES WITH DIFFERENT MICROGEOMETRIES. Interfacial Phenomena and Heat Transfer, 2014, 2, 155-180.	0.3	5
74	Understanding (sessile/constrained) bubble and drop oscillations. Advances in Colloid and Interface Science, 2014, 203, 22-36.	7.0	37
75	Liquid transfer mechanism between two surfaces and the role of contact angles. Soft Matter, 2014, 10, 2503.	1.2	45
76	Study of Model Superoleophobic Surfaces Fabricated with a Modified Bosch Etch Method. Langmuir, 2014, 30, 14039-14047.	1.6	16
77	Wetting of Rough Surfaces by a Low Surface Tension Liquid. Journal of Physical Chemistry C, 2014, 118, 23777-23782.	1.5	29
78	Modeling and Measurement of Contact Angle Hysteresis on Textured High-Contact-Angle Surfaces. Journal of Physical Chemistry C, 2014, 118, 18554-18563.	1.5	29
79	Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades. Cold Regions Science and Technology, 2014, 100, 50-58.	1.6	101
80	Oil drop shedding from solid substrates by a shearing liquid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 796-806.	2.3	36
81	Understanding the anti-icing behavior of superhydrophobic surfaces. Surface Innovations, 2014, 2, 94-102.	1.4	41
82	A methodology to determine the adhesion force of arbitrarily shaped drops with convex contact lines. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 425-433.	2.3	23
83	A novel electro-thermal anti-icing system for fiber-reinforced polymer composite airfoils. Cold Regions Science and Technology, 2013, 87, 47-58.	1.6	107
84	Understanding the evaporation of spherical drops in quiescent environment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 432, 82-88.	2.3	19
85	Study of Edge Effect to Stop Liquid Spillage for Microgravity Application. Microgravity Science and Technology, 2013, 25, 27-33.	0.7	16
86	Drop Rebound after Impact: The Role of the Receding Contact Angle. Langmuir, 2013, 29, 16045-16050.	1.6	135
87	Modeling Liquid Bridge between Surfaces with Contact Angle Hysteresis. Langmuir, 2013, 29, 3310-3319.	1.6	73
88	Simultaneous monitoring of ice accretion and thermography of an airfoil: an IR imaging methodology. Measurement Science and Technology, 2012, 23, 105405.	1.4	8
89	Drop impact and wettability: From hydrophilic to superhydrophobic surfaces. Physics of Fluids, 2012, 24, .	1.6	293
90	The path to developing realistic finite element long bone models. International Journal of Experimental and Computational Biomechanics, 2012, 2, 30.	0.4	0

#	Article	IF	CITATIONS
91	Fabrication of polymeric surfaces with similar contact angles but dissimilar contact angle hysteresis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 408, 17-21.	2.3	27
92	Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matter, 2012, 8, 10045.	1.2	68
93	Understanding the Edge Effect in Wetting: A Thermodynamic Approach. Langmuir, 2012, 28, 9421-9430.	1.6	47
94	The Cassie equation: How it is meant to be used. Advances in Colloid and Interface Science, 2012, 170, 48-55.	7.0	234
95	Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces. Physical Chemistry Chemical Physics, 2011, 13, 16208.	1.3	35
96	Producing a superhydrophobic paper and altering its repellency through ink-jet printing. Lab on A Chip, 2011, 11, 936.	3.1	39
97	Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Regions Science and Technology, 2011, 67, 58-67.	1.6	369
98	A Robust Superhydrophobic Surface for Digital Microfluidics. , 2011, , .		0
99	In vitro biomechanical testing of anterior cruciate ligament reconstruction: Traditional versus physiologically relevant load analysis. Knee, 2011, 18, 193-201.	0.8	16
100	A method for measuring contact angle of asymmetric and symmetric drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 388, 29-37.	2.3	67
101	Direct laser patterning of self-assembled monolayer using elliptical laser beams: A theoretical parametric study. Optics and Laser Technology, 2011, 43, 1377-1384.	2.2	5
102	Understanding the Role of Surface Micro-Texture on the Delayed Freezing of Drops on Cold Surfaces. , 2011, , .		1
103	A Finite Element Model for Predicting the Collapse of Short and Large Two-Line Patterns During Drying Process in Photolithography. , 2010, , .		0
104	Representation of bone heterogeneity in subject-specific finite element models for knee. Computer Methods and Programs in Biomedicine, 2010, 99, 154-171.	2.6	10
105	Effects of liquid viscosity and surface tension on atomization in two-phase, gas/liquid fluid coker nozzles. Fuel, 2010, 89, 1872-1882.	3.4	54
106	Magnetophoretic measurement of the drag force on partially immersed microparticles at air–liquid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 360, 120-128.	2.3	21
107	Review: The Status of Magnetic Aerosol Drug Targeting in the Lung. , 2010, , .		2

#	Article	IF	CITATIONS
109	Interaction of a Microsphere with a Solid-Supported Liquid Film. Langmuir, 2010, 26, 11797-11803.	1.6	42
110	Detachment Force of Particles from Airâ^'Liquid Interfaces of Films and Bubbles. Langmuir, 2010, 26, 18135-18143.	1.6	45
111	Autophilic Effect: Wetting of Hydrophobic Surfaces by Surfactant Solutions. Langmuir, 2010, 26, 4668-4674.	1.6	27
112	Understanding Pattern Collapse in Photolithography Process Due to Capillary Forces. Langmuir, 2010, 26, 13707-13714.	1.6	72
113	Drop Shedding by Shear Flow for Hydrophilic to Superhydrophobic Surfaces. Langmuir, 2009, 25, 14155-14164.	1.6	124
114	General Methodology for Evaluating the Adhesion Force of Drops and Bubbles on Solid Surfaces. Langmuir, 2009, 25, 6143-6154.	1.6	110
115	Subject-specific finite element model of knee: experimental validation using composite and bovine specimens. International Journal of Experimental and Computational Biomechanics, 2009, 1, 146.	0.4	1
116	Controller design and optimization for large-delays image processing in visual closed-loop systems. Mechatronics, 2008, 18, 251-261.	2.0	1
117	Use of mucolytics to enhance magnetic particle retention at a model airway surface. Journal of Magnetism and Magnetic Materials, 2008, 320, 1834-1843.	1.0	8
118	Understanding of sliding and contact angle results in tilted plate experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323, 73-82.	2.3	252
119	Factors affecting the measurement of roughness factor of surfaces and its implications for wetting studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323, 83-93.	2.3	63
120	A NURBS-based technique for subject-specific construction of knee bone geometry. Computer Methods and Programs in Biomedicine, 2008, 92, 20-34.	2.6	18
121	Fabrication of Surface Energy/Chemical Gradients Using Self-Assembled Monolayer Surfaces. Langmuir, 2008, 24, 2892-2899.	1.6	21
122	Hierarchical structures for natural superhydrophobic surfaces. Soft Matter, 2008, 4, 462-466.	1.2	127
123	Analysis of Patterning Nanometer Thin Organic Monolayers by a Laser: Curvilinear Paths and Junctions. Journal of Computational and Theoretical Nanoscience, 2008, 5, 2054-2059.	0.4	1
124	DEVELOPMENT OF AN EXPERIMENTAL METHOD TO EVALUATE THE STABILITY OF GAS-LIQUID SPRAYS. Small Group Research, 2008, 18, 699-722.	1.8	8
125	Mechanism for femtosecond laser pulse patterning of self-assembled monolayers on gold-coated substrates. Journal of Physics: Conference Series, 2007, 59, 428-431.	0.3	11
126	Nanotechnology's Implications for Select Systems of Renewable Energy. International Journal of Green Energy, 2007, 4, 483-503.	2.1	10

#	Article	IF	CITATIONS
127	Superhydrophobic Surfaces: Adhesive Strongly to Water?. Advanced Materials, 2007, 19, 3421-3422.	11.1	54
128	Analytical study for atomization of biodiesels and their blends in a typical injector: Surface tension and viscosity effects. Fuel, 2007, 86, 1534-1544.	3.4	284
129	Magnetic nanoparticles hit the target. Nature Nanotechnology, 2007, 2, 467-468.	15.6	64
130	Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements. Journal of Biomechanics, 2007, 40, 1410-1416.	0.9	97
131	Microtextured superhydrophobic surfaces: A thermodynamic analysis. Advances in Colloid and Interface Science, 2007, 132, 51-68.	7.0	157
132	Fabrication of Superhydrophobic Surfaces ofn-Hexatriacontane. Langmuir, 2006, 22, 5556-5559.	1.6	99
133	Effects of an electric field on the surface tension of conducting drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 289, 25-38.	2.3	35
134	Factors Affecting Magnetic Retention of Particles in the Upper Airways: An In Vitro and Ex Vivo Study. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2006, 19, 491-509.	1.2	19
135	Automatic Focusing for Objects with Large Displacement at High Magnification. Measurement and Control, 2006, 39, 118-121.	0.9	0
136	Effect of Gravity on the Macroscopic Advancing Contact Angle of Sessile Drops. Canadian Journal of Chemical Engineering, 2006, 84, 39-43.	0.9	16
137	Effect of gravity and electric field on shape and surface tension of drops. Advances in Space Research, 2005, 36, 64-69.	1.2	44
138	A parametric analysis of fixation post shape in tibial knee prostheses. Medical Engineering and Physics, 2005, 27, 123-134.	0.8	37
139	A three-dimensional finite element stress analysis for tunnel placement and buttons in anterior cruciate ligament reconstructions. Journal of Biomechanics, 2005, 38, 827-832.	0.9	33
140	The effect of line tension on the shape of liquid menisci near stripwise heterogeneous walls. Advances in Colloid and Interface Science, 2005, 114-115, 103-118.	7.0	14
141	Investigation of a hybrid method of soft tissue graft fixation for anterior cruciate ligament reconstruction. Knee, 2005, 12, 149-153.	0.8	13
142	Magnetic targeting of aerosol particles for cancer therapy. Journal of Magnetism and Magnetic Materials, 2005, 293, 442-449.	1.0	52
143	Stiffness characteristics of hamstring tendon graft fixation methods at the femoral site. International Orthopaedics, 2005, 29, 35-38.	0.9	14
144	Effect of electric fields on contact angle and surface tension of drops. Journal of Colloid and Interface Science, 2005, 283, 215-222.	5.0	90

#	Article	IF	CITATIONS
145	A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces. Journal of Colloid and Interface Science, 2005, 292, 195-201.	5.0	260
146	A novel methodology to study shape and surface tension of drops in Electric Fields. Microgravity Science and Technology, 2005, 16, 153-157.	0.7	9
147	Kinetics of alkanethiol monolayer desorption from gold in air. Chemical Communications, 2005, , 4869.	2.2	22
148	Contact Angle Measurement for Dispersed Microspheres Using Scanning Confocal Microscopy. Journal of Dispersion Science and Technology, 2005, 25, 567-574.	1.3	27
149	Thermo-Kinetics Study of Laser-Induced Desorption of Self-Assembled Monolayers from Gold:  Case of Laser Micropatterning. Journal of Physical Chemistry B, 2005, 109, 11996-12002.	1.2	19
150	ON THERMODYNAMICS OF THIN FILMS: THE MECHANICAL EQUILIBRIUM CONDITION AND CONTACT ANGLES. Journal of Adhesion, 2004, 80, 1003-1016.	1.8	8
151	Status of the three-phase line tension: a review. Advances in Colloid and Interface Science, 2004, 110, 121-141.	7.0	315
152	Direct Patterning of Self-Assembled Monolayers on Gold Using a Laser Beam. Langmuir, 2004, 20, 2667-2676.	1.6	47
153	Effect of Surfactants on Wetting of Super-Hydrophobic Surfaces. Langmuir, 2004, 20, 9657-9662.	1.6	147
154	Development of a New Methodology To Study Drop Shape and Surface Tension in Electric Fields. Langmuir, 2004, 20, 7589-7597.	1.6	84
155	Determination of line tension for systems near wetting. Journal of Colloid and Interface Science, 2003, 265, 152-160.	5.0	42
156	A high-accuracy polynomial fitting approach to determine contact angles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 219, 215-231.	2.3	106
157	Generalized Mechanical Equilibrium Condition for Multiphase Contact Lines and Multiphase Contact Points. Langmuir, 2003, 19, 4658-4665.	1.6	3
158	Development of a finite element tool for stress analysis of femur and tibia incorporating anatomically realistic mechanical properties. , 2003, , 1617-1621.		2
159	Implementation and examination of a new drop shape analysis algorithm to measure contact angle and surface tension from the diameters of two sessile drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 161, 63-74.	2.3	8
160	Measurements of Line Tension for Solidâ^'Liquidâ^'Vapor Systems Using Drop Size Dependence of Contact Angles and Its Correlation with Solidâ^'Liquid Interfacial Tension. Langmuir, 2000, 16, 2024-2031.	1.6	64
161	Automation of the axisymmetric drop shape analysis-diameter for contact angle measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156, 163-176.	2.3	26
162	Line Tension Measurements through Drop Size Dependence of Contact Angle. Journal of Colloid and Interface Science, 1998, 205, 1-11.	5.0	121

#	Article	IF	CITATIONS
163	Drop size dependence of contact angles for liquid tin on silica surface: line tension and its correlation with solid–liquid interfacial tension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 142, 183-188.	2.3	40
164	Line Tension Measurements:Â An Application of the Quadrilateral Relation to a Liquid Lens System. Langmuir, 1997, 13, 3035-3042.	1.6	31
165	Determination of contact angle of microspheres by microscopy methods. , 0, , .		3
166	Direct writing of self-assembled monolayers on gold coated substrates using a CW argon laser. , 0, , .		1
167	Effect of Superhydrophobic Surfaces for Wetting in Micro-Systems. , 0, , .		0
168	Model Studies of Magnetic Particle Retention in the Conducting Airways. , 0, , .		1
169	Effect of Gravity on the Macroscopic Advancing Contact Angle: An Experimental Investigation. , 0, , .		0
170	Effect of Biodiesel Fuel Properties and Its Blends on Atomization. , 0, , .		21
171	New Ellipse Fitting Method for Contact Angle Measurement. Surface Innovations, 0, , 1-9.	1.4	2