
Diego Centonze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6410630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Different Susceptibility of T and B Cells to Cladribine Depends On Their Levels of Deoxycytidine Kinase Activity Linked to Activation Status. Journal of NeuroImmune Pharmacology, 2022, 17, 195-205.	2.1	10
2	MiRâ€142â€3p regulates synaptopathyâ€driven disease progression in multiple sclerosis. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	13
3	Pivotal Trials in Multiple Sclerosis: Similarities Prove Not to Be Useful. Neurology and Therapy, 2022, 11, 1-8.	1.4	3
4	Multiple sclerosis: Inflammation, autoimmunity and plasticity. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 457-470.	1.0	9
5	Neuroinflammation Is Associated with GFAP and sTREM2 Levels in Multiple Sclerosis. Biomolecules, 2022, 12, 222.	1.8	21
6	The BDNF Val66Met Polymorphism (rs6265) Modulates Inflammation and Neurodegeneration in the Early Phases of Multiple Sclerosis. Genes, 2022, 13, 332.	1.0	5
7	Influence of Previous Disease-Modifying Drug Exposure on T-Lymphocyte Dynamic in Patients With Multiple Sclerosis Treated With Ocrelizumab. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	9
8	Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells' Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration. Diagnostics, 2022, 12, 1156.	1.3	3
9	Early use of high-efficacy disease‑modifying therapies makes the difference in people with multiple sclerosis: an expert opinion. Journal of Neurology, 2022, 269, 5382-5394.	1.8	32
10	Interleukin 6 SNP rs1818879 Regulates Radiological and Inflammatory Activity in Multiple Sclerosis. Genes, 2022, 13, 897.	1.0	3
11	Varicella zoster virus and influenza vaccine antibody titres in patients from MAGNIFY-MS who were treated with cladribine tablets for highly active relapsing multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 2151-2153.	1.4	7
12	Preventive exercise attenuates IL-2-driven mood disorders in multiple sclerosis. Neurobiology of Disease, 2022, 172, 105817.	2.1	8
13	Predictors of lymphocyte count recovery after dimethyl fumarate-induced lymphopenia in people with multiple sclerosis. Journal of Neurology, 2021, 268, 2238-2245.	1.8	15
14	Operationalization of a frailty index in patients with multiple sclerosis: A cross-sectional investigation. Multiple Sclerosis Journal, 2021, 27, 1939-1947.	1.4	13
15	The microRNA let-7b-5p Is Negatively Associated with Inflammation and Disease Severity in Multiple Sclerosis. Cells, 2021, 10, 330.	1.8	24
16	Therapeutic recommendations and seasonal influenza vaccine for multiple sclerosis patients in treatment with ocrelizumab: an expert consensus. Journal of Neurology, 2021, 268, 1540-1543.	1.8	4
17	Prioritizing progressive MS rehabilitation research: A call from the International Progressive MS Alliance. Multiple Sclerosis Journal, 2021, 27, 989-1001.	1.4	13
18	Drugs used in the treatment of multiple sclerosis during COVID-19 pandemic: a critical viewpoint. Current Neuropharmacology, 2021, 19, .	1.4	5

#	Article	IF	CITATIONS
19	COVID-19 in Patients with Multiple Sclerosis: Associations with Disease-Modifying Therapies. CNS Drugs, 2021, 35, 317-330.	2.7	89
20	Disease-modifying therapies and SARS-CoV-2 vaccination in multiple sclerosis: an expert consensus. Journal of Neurology, 2021, 268, 3961-3968.	1.8	47
21	Macrophage Plasticity and Polarization Are Altered in the Experimental Model of Multiple Sclerosis. Biomolecules, 2021, 11, 837.	1.8	22
22	Assessment of Macular Function by Multifocal Electroretinogram in Patients with Multiple Sclerosis Treated with Fingolimod. Advances in Therapy, 2021, 38, 3986-3996.	1.3	2
23	Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity, 2021, 54, 1543-1560.e6.	6.6	42
24	Time for a new deal between neurology and psychoanalysis. Brain, 2021, 144, 2228-2230.	3.7	2
25	COVID-19 vaccines in multiple sclerosis treated with cladribine or ocrelizumab. Multiple Sclerosis and Related Disorders, 2021, 52, 102983.	0.9	25
26	Cerebrospinal fluid levels of Lâ€glutamate signal central inflammatory neurodegeneration in multiple sclerosis. Journal of Neurochemistry, 2021, 159, 857-866.	2.1	7
27	Disease Reactivation after Fingolimod Discontinuation in Pregnant Multiple Sclerosis Patients. Neurotherapeutics, 2021, 18, 2598-2607.	2.1	12
28	Age at Disease Onset Associates With Oxidative Stress, Neuroinflammation, and Impaired Synaptic Plasticity in Relapsing-Remitting Multiple Sclerosis. Frontiers in Aging Neuroscience, 2021, 13, 694651.	1.7	9
29	Exercise protects from hippocampal inflammation and neurodegeneration in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2021, 98, 13-27.	2.0	22
30	Effects of Prismatic Lenses on Lateral Axial Dystonia in Parkinson's Disease: A Pilot Study. Innovations in Clinical Neuroscience, 2021, 18, 39-42.	0.1	0
31	Expert opinion on COVID-19 vaccination and the use of cladribine tablets in clinical practice. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642110582.	1.5	9
32	Case Report: Overlap Between Long COVID and Functional Neurological Disorders. Frontiers in Neurology, 2021, 12, 811276.	1.1	8
33	Sleep Disorders in Patients With Craniopharyngioma: A Physiopathological and Practical Update. Frontiers in Neurology, 2021, 12, 817257.	1.1	7
34	Theoretical and Therapeutic Implications of the Spasticity-Plus Syndrome Model in Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 802918.	1.1	7
35	Oral D-Aspartate enhances synaptic plasticity reserve in progressive multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 304-311.	1.4	13
36	Peripheral T cells from multiple sclerosis patients trigger synaptotoxic alterations in central neurons. Neuropathology and Applied Neurobiology, 2020, 46, 160-170.	1.8	17

#	Article	lF	CITATIONS
37	Obesity worsens central inflammation and disability in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 1237-1246.	1.4	72
38	Exit strategies for "needle fatigue―in multiple sclerosis: a propensity score-matched comparison study. Journal of Neurology, 2020, 267, 694-702.	1.8	6
39	Italian consensus on treatment of spasticity in multiple sclerosis. European Journal of Neurology, 2020, 27, 445-453.	1.7	20
40	â€~Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opinion on Therapeutic Targets, 2020, 24, 37-46.	1.5	16
41	Practice-dependent motor cortex plasticity is reduced in non-disabled multiple sclerosis patients. Clinical Neurophysiology, 2020, 131, 566-573.	0.7	13
42	Modeling Resilience to Damage in Multiple Sclerosis: Plasticity Meets Connectivity. International Journal of Molecular Sciences, 2020, 21, 143.	1.8	9
43	A Single Nucleotide ADA Genetic Variant Is Associated to Central Inflammation and Clinical Presentation in MS: Implications for Cladribine Treatment. Genes, 2020, 11, 1152.	1.0	5
44	Emerging Role of Extracellular Vesicles in the Pathophysiology of Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 7336.	1.8	39
45	Interleukin-1β Alters Hebbian Synaptic Plasticity in Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 6982.	1.8	9
46	Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells, 2020, 9, 2290.	1.8	52
47	Specific dietary interventions to tackle obesity should be a routine part of recommended MS care – Yes. Multiple Sclerosis Journal, 2020, 26, 1627-1629.	1.4	2
48	Therapeutic interventions for Pisa syndrome in idiopathic Parkinson's disease. A Scoping Systematic Review. Clinical Neurology and Neurosurgery, 2020, 198, 106242.	0.6	9
49	Nabiximols discontinuation rate in a large population of patients with multiple sclerosis: a 18-month multicentre study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 914-920.	0.9	5
50	Myasthenia Gravis Associated With SARS-CoV-2 Infection. Annals of Internal Medicine, 2020, 173, 1027-1028.	2.0	128
51	Functional Assessment of Outer and Middle Macular Layers in Multiple Sclerosis. Journal of Clinical Medicine, 2020, 9, 3766.	1.0	7
52	Morphological Outer Retina Findings in Multiple Sclerosis Patients With or Without Optic Neuritis. Frontiers in Neurology, 2020, 11, 858.	1.1	6
53	Cerebrospinal fluid inflammatory biomarkers predicting interferon-beta response in MS patients. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642097083.	1.5	5
54	Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction. Haematologica, 2020, 105, 2056-2070.	1.7	70

#	Article	IF	CITATIONS
55	Central Modulation of Selective Sphingosine-1-Phosphate Receptor 1 Ameliorates Experimental Multiple Sclerosis. Cells, 2020, 9, 1290.	1.8	23
56	A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum. Cell Reports, 2020, 31, 107703.	2.9	25
57	Moving exercise research in multiple sclerosis forward (the MoXFo initiative): Developing consensus statements for research. Multiple Sclerosis Journal, 2020, 26, 1303-1308.	1.4	46
58	IL-6 in the Cerebrospinal Fluid Signals Disease Activity in Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 120.	1.8	32
59	Inflammation-Associated Synaptic Alterations as Shared Threads in Depression and Multiple Sclerosis. Frontiers in Cellular Neuroscience, 2020, 14, 169.	1.8	35
60	Inflammation and Corticospinal Functioning in Multiple Sclerosis: A TMS Perspective. Frontiers in Neurology, 2020, 11, 566.	1.1	14
61	Expert opinion on the use of cladribine tablets in clinical practice. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642093501.	1.5	23
62	Clinical and patient determinants of changing therapy in relapsing-remitting multiple sclerosis (SWITCH study). Multiple Sclerosis and Related Disorders, 2020, 42, 102124.	0.9	18
63	Advances in physical rehabilitation of multiple sclerosis. Current Opinion in Neurology, 2020, 33, 255-261.	1.8	20
64	CSF Levels of the Endocannabinoid Anandamide are Reduced in Patients with Untreated Narcolepsy Type 1: A Pilot Study. CNS and Neurological Disorders - Drug Targets, 2020, 19, 142-147.	0.8	4
65	Interleukin-6 Disrupts Synaptic Plasticity and Impairs Tissue Damage Compensation in Multiple Sclerosis. Neurorehabilitation and Neural Repair, 2019, 33, 825-835.	1.4	26
66	The influence of physiotherapy intervention on patients with multiple sclerosis–related spasticity treated with nabiximols (THC:CBD oromucosal spray). PLoS ONE, 2019, 14, e0219670.	1.1	7
67	Fingolimod Immune Effects Beyond Its Sequestration Ability. Neurology and Therapy, 2019, 8, 231-240.	1.4	22
68	Treatment with Dimethyl Fumarate Enhances Cholinergic Transmission in Multiple Sclerosis. CNS Drugs, 2019, 33, 1133-1139.	2.7	7
69	Beyond rehabilitation in MS: Insights from non-invasive brain stimulation. Multiple Sclerosis Journal, 2019, 25, 1363-1371.	1.4	28
70	Immunomodulatory Effects of Exercise in Experimental Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 2197.	2.2	33
71	Joint Healthcare Professional and Patient Development of Communication Tools to Improve the Standard of MS Care. Advances in Therapy, 2019, 36, 3238-3252.	1.3	20
72	IFNβ enhances mesenchymal stromal (Stem) cells immunomodulatory function through STAT1-3 activation and mTOR-associated promotion of glucose metabolism. Cell Death and Disease, 2019, 10, 85.	2.7	34

#	Article	IF	CITATIONS
73	Predictors of Evolution Into Multiple Sclerosis After a First Acute Demyelinating Syndrome in Children and Adolescents. Frontiers in Neurology, 2019, 9, 1156.	1.1	12
74	The Characterization of Regulatory T-Cell Profiles in Alzheimer's Disease and Multiple Sclerosis. Scientific Reports, 2019, 9, 8788.	1.6	90
75	Subclinical dysphagia in task-specific mouth tremor triggered by drinking. Clinical Neurophysiology, 2019, 130, 1289-1291.	0.7	1
76	Distinct Expression of Inflammatory Features in T Helper 17 Cells from Multiple Sclerosis Patients. Cells, 2019, 8, 533.	1.8	14
77	Voluntary running wheel attenuates motor deterioration and brain damage in cuprizone-induced demyelination. Neurobiology of Disease, 2019, 129, 102-117.	2.1	42
78	A pilot study on the efficacy of transcranial direct current stimulation applied to the pharyngeal motor cortex for dysphagia associated with brainstem involvement in multiple sclerosis. Clinical Neurophysiology, 2019, 130, 1017-1024.	0.7	17
79	Cerebral glucose metabolism in idiopathic REM sleep behavior disorder is different from tau-related and α-synuclein-related neurodegenerative disorders: A brain [18F]FDG PET study. Parkinsonism and Related Disorders, 2019, 64, 97-105.	1.1	22
80	Transient Receptor Potential Vanilloid 1 Modulates Central Inflammation in Multiple Sclerosis. Frontiers in Neurology, 2019, 10, 30.	1.1	33
81	Sleep Complaints, Sleep and Breathing Disorders in Myotonic Dystrophy Type 2. Current Neurology and Neuroscience Reports, 2019, 19, 9.	2.0	11
82	Synaptic Plasticity Shapes Brain Connectivity: Implications for Network Topology. International Journal of Molecular Sciences, 2019, 20, 6193.	1.8	78
83	The Italian multiple sclerosis register. Neurological Sciences, 2019, 40, 155-165.	0.9	59
84	Early diagnosis of progressive multifocal leucoencephalopathy: longitudinal lesion evolution. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 261-267.	0.9	22
85	The cross-cultural adaptation and psychometric validation of the MSSS-88 for use in Italian patients with multiple sclerosis. Disability and Rehabilitation, 2019, 41, 465-471.	0.9	2
86	PDGF Modulates Synaptic Excitability and Short-Latency Afferent Inhibition in Multiple Sclerosis. Neurochemical Research, 2019, 44, 726-733.	1.6	5
87	The Link Among Neurological Diseases: Extracellular Vesicles as a Possible Brain Injury Footprint. NeuroSignals, 2019, 27, 25-39.	0.5	13
88	Fingolimod reduces the clinical expression of active demyelinating lesions in MS. Multiple Sclerosis and Related Disorders, 2018, 20, 215-219.	0.9	5
89	Identifying neuropathic pain in patients with multiple sclerosis: a cross-sectional multicenter study using highly specific criteria. Journal of Neurology, 2018, 265, 828-835.	1.8	45
90	Do we have enough evidence for recommending therapeutic apheresis for natalizumabâ€related progressive multifocal leukoencephalopathy patients? Comment on "Guidelines on the use of therapeutic apheresis in clinical practiceâ€evidenceâ€based approach from the Writing Committee of the American Society for apheresis: The seventh special issue.†Journal of Clinical Apheresis, 2018, 33, 450-451.	0.7	2

#	Article	IF	CITATIONS
91	Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet, The, 2018, 391, 1263-1273.	6.3	684
92	Can pharmacological manipulation of LTP favor the effects of motor rehabilitation in multiple sclerosis Journal, 2018, 24, 902-907.	1.4	5
93	The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: Clues for other neuroinflammatory diseases. Progress in Neurobiology, 2018, 160, 82-100.	2.8	104
94	Nerve growth factor is elevated in the CSF of patients with multiple sclerosis and central neuropathic pain. Journal of Neuroimmunology, 2018, 314, 89-93.	1.1	10
95	Restless legs syndrome is highly prevalent in patients with postpolio syndrome. Sleep Medicine, 2018, 41, 112.	0.8	0
96	Unmet needs, burden of treatment, and patient engagement in multiple sclerosis: A combined perspective from the MS in the 21st Century Steering Group. Multiple Sclerosis and Related Disorders, 2018, 19, 153-160.	0.9	101
97	Abnormal cervical lymph nodes in multiple sclerosis: a preliminary ultrasound study. Radiologia Medica, 2018, 123, 202-208.	4.7	5
98	Letter to the Editor Regarding: A Comprehensive Review on Copemyl®. Neurology and Therapy, 2018, 7, 385-390.	1.4	1
99	AMBRA1 Controls Regulatory T-Cell Differentiation and Homeostasis Upstream of the FOXO3-FOXP3 Axis. Developmental Cell, 2018, 47, 592-607.e6.	3.1	34
100	Exploiting the Multifaceted Effects of Cannabinoids on Mood to Boost Their Therapeutic Use Against Anxiety and Depression. Frontiers in Molecular Neuroscience, 2018, 11, 424.	1.4	34
101	No evidence of disease activity (NEDA-3) and disability improvement after alemtuzumab treatment for multiple sclerosis: a 36-month real-world study. Journal of Neurology, 2018, 265, 2851-2860.	1.8	43
102	Multiple sclerosis and fabry Disease, two sides of the coin? The case of an Italian family. Multiple Sclerosis and Related Disorders, 2018, 26, 164-167.	0.9	4
103	Comparative Sleep Disturbances in Myotonic Dystrophy Types 1 and 2. Current Neurology and Neuroscience Reports, 2018, 18, 102.	2.0	19
104	Profile of pitolisant in the management of narcolepsy: design, development, and place in therapy. Drug Design, Development and Therapy, 2018, Volume 12, 2665-2675.	2.0	36
105	Multiple Sclerosis: kFLC index values related to gender. Multiple Sclerosis and Related Disorders, 2018, 26, 58-60.	0.9	1
106	Delayed treatment of MS is associated with high CSF levels of IL-6 and IL-8 and worse future disease course. Journal of Neurology, 2018, 265, 2540-2547.	1.8	38
107	Effectiveness of Physiotherapy Interventions on Spasticity in People With Multiple Sclerosis. American Journal of Physical Medicine and Rehabilitation, 2018, 97, 793-807.	0.7	38
108	Abortion induces reactivation of inflammation in relapsing-remitting multipleÂsclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1272-1278.	0.9	10

#	Article	IF	CITATIONS
109	Tumor Necrosis Factor and Interleukin-1 <i>β</i> Modulate Synaptic Plasticity during Neuroinflammation. Neural Plasticity, 2018, 2018, 1-12.	1.0	149
110	Safety and Efficacy of Dimethyl Fumarate in Multiple Sclerosis: An Italian, Multicenter, Real-World Study. CNS Drugs, 2018, 32, 963-970.	2.7	35
111	Laquinimod ameliorates excitotoxic damage by regulating glutamate re-uptake. Journal of Neuroinflammation, 2018, 15, 5.	3.1	25
112	Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis. Journal of Neuroinflammation, 2018, 15, 108.	3.1	22
113	Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Frontiers in Aging Neuroscience, 2018, 10, 238.	1.7	82
114	Fingolimod vs dimethyl fumarate in multiple sclerosis. Neurology, 2018, 91, e153-e161.	1.5	35
115	Mitochondrial Serine Protease HTRA2 p.G399S in a Female with Di George Syndrome and Parkinson's Disease. Parkinson's Disease, 2018, 2018, 1-6.	0.6	2
116	No evidence of beneficial effects of plasmapheresis in natalizumab-associated PML. Neurology, 2017, 88, 1144-1152.	1.5	57
117	Cannabinoids therapeutic use: what is our current understanding following the introduction of THC, THC:CBD oromucosal spray and others?. Expert Review of Clinical Pharmacology, 2017, 10, 443-455.	1.3	66
118	Cannabinoids in Parkinson's Disease. Cannabis and Cannabinoid Research, 2017, 2, 21-29.	1.5	71
119	Neurophysiology of synaptic functioning in multiple sclerosis. Clinical Neurophysiology, 2017, 128, 1148-1157.	0.7	50
120	KFLC Index utility in multiple sclerosis diagnosis: Further confirmation. Journal of Neuroimmunology, 2017, 309, 31-33.	1.1	31
121	Heart rate variability is differentially altered in multiple sclerosis: implications for acute, worsening and progressive disability. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2017, 3, 205521731770131.	0.5	20
122	TRPV1 polymorphisms and risk of interferon Î ² -induced flu-like syndrome in patients with relapsing-remitting multiple sclerosis. Journal of Neuroimmunology, 2017, 305, 172-174.	1.1	5
123	miR-142-3p Is a Key Regulator of IL-1Î ² -Dependent Synaptopathy in Neuroinflammation. Journal of Neuroscience, 2017, 37, 546-561.	1.7	88
124	Effects of postural exercises in patients with Parkinson's disease and Pisa syndrome: A pilot study. NeuroRehabilitation, 2017, 41, 423-428.	0.5	13
125	Efficacy of fingolimod and interferon beta-1b on cognitive, MRI, and clinical outcomes in relapsing–remitting multiple sclerosis: an 18-month, open-label, rater-blinded, randomised, multicentre study (the GOLDEN study). Journal of Neurology, 2017, 264, 2436-2449.	1.8	44
126	Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis. Neurology, 2017, 89, 1338-1347.	1.5	118

8

#	Article	IF	CITATIONS
127	Identifying Relapses in Multiple Sclerosis Patients through Administrative Data: A Validation Study in the Lazio Region, Italy. Neuroepidemiology, 2017, 48, 171-178.	1.1	6
128	Interferon-Î ³ causes mood abnormalities by altering cannabinoid CB1 receptor function in the mouse striatum. Neurobiology of Disease, 2017, 108, 45-53.	2.1	11
129	A novel crosstalk within the endocannabinoid system controls GABA transmission in the striatum. Scientific Reports, 2017, 7, 7363.	1.6	46
130	Immunometabolic profiling of T cells from patients with relapsing-remitting multiple sclerosis reveals an impairment in glycolysis and mitochondrial respiration. Metabolism: Clinical and Experimental, 2017, 77, 39-46.	1.5	67
131	The still under-investigated role of cognitive deficits in PML diagnosis. Multiple Sclerosis and Demyelinating Disorders, 2017, 2, .	1.1	4
132	Real-world effectiveness of natalizumab and fingolimod compared with self-injectable drugs in non-responders and in treatment-naÃ`ve patients with multiple sclerosis. Journal of Neurology, 2017, 264, 284-294.	1.8	44
133	Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach. Frontiers in Neuroscience, 2017, 11, 710.	1.4	15
134	Amyloid-β Homeostasis Bridges Inflammation, Synaptic Plasticity Deficits and Cognitive Dysfunction in Multiple Sclerosis. Frontiers in Molecular Neuroscience, 2017, 10, 390.	1.4	21
135	Management of flu-like syndrome with cetirizine in patients with relapsing-remitting multiple sclerosis during therapy with interferon beta: Results of a randomized, cross-over, placebo-controlled pilot study. PLoS ONE, 2017, 12, e0165415.	1.1	5
136	Sativex in resistant multiple sclerosis spasticity: Discontinuation study in a large population of Italian patients (SA.FE. study). PLoS ONE, 2017, 12, e0180651.	1.1	24
137	miR-142-3p Is a Key Regulator of IL-1β-Dependent Synaptopathy in Neuroinflammation. Journal of Neuroscience, 2017, 37, 546-561.	1.7	10
138	Caspase-8 contributes to angiogenesis and chemotherapy resistance in glioblastoma. ELife, 2017, 6, .	2.8	47
139	Management Strategies for Flu-Like Symptoms and Injection-Site Reactions Associated with Peginterferon Beta-1a. International Journal of MS Care, 2016, 18, 211-218.	0.4	18
140	Siponimod (BAF312) prevents synaptic neurodegeneration in experimental multiple sclerosis. Journal of Neuroinflammation, 2016, 13, 207.	3.1	127
141	Depressive Symptoms Correlate with Disability and Disease Course in Multiple Sclerosis Patients: An Italian Multi-Center Study Using the Beck Depression Inventory. PLoS ONE, 2016, 11, e0160261.	1.1	46
142	Disability and Fatigue Can Be Objectively Measured in Multiple Sclerosis. PLoS ONE, 2016, 11, e0148997.	1.1	28
143	Efficacy and safety of cannabinoid oromucosal spray for multiple sclerosis spasticity. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 944-951.	0.9	88
144	Long-term adherence of patients with relapsing-remitting multiple sclerosis to subcutaneous self-injections of interferon β-1a using an electronic device: the RIVER study. Expert Opinion on Drug Delivery, 2016, 13, 931-935.	2.4	16

#	Article	IF	CITATIONS
145	The importance of a multi-disciplinary perspective and patient activation programmes in MS management. Multiple Sclerosis Journal, 2016, 22, 34-46.	1.4	44
146	Modulation of monocytes by bioactive lipid anandamide in multiple sclerosis involves distinct Toll-like receptors. Pharmacological Research, 2016, 113, 313-319.	3.1	22
147	Neural Stem Cell Transplantation Induces Stroke Recovery by Upregulating Glutamate Transporter GLT-1 in Astrocytes. Journal of Neuroscience, 2016, 36, 10529-10544.	1.7	91
148	Interaction between interleukin-1l ² and type-1 cannabinoid receptor is involved in anxiety-like behavior in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2016, 13, 231.	3.1	35
149	The heritage of glatiramer acetate and its use in multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders, 2016, 1, .	1.1	14
150	Rituximab in the treatment of Neuromyelitis optica: a multicentre Italian observational study. Journal of Neurology, 2016, 263, 1727-1735.	1.8	45
151	RANTES correlates with inflammatory activity and synaptic excitability in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1405-1412.	1.4	46
152	Diagnostic tools for assessment of urinary dysfunction in MS patients without urinary disturbances. Neurological Sciences, 2016, 37, 437-442.	0.9	7
153	Epigenetic modifications of Dexras 1 along the nNOS pathway in an animal model of multiple sclerosis. Journal of Neuroimmunology, 2016, 294, 32-40.	1.1	6
154	Prevalence of multiple sclerosis in the Lazio region, Italy: use of an algorithm based on health information systems. Journal of Neurology, 2016, 263, 751-759.	1.8	35
155	Cerebrospinal fluid lactate is associated with multiple sclerosis disease progression. Journal of Neuroinflammation, 2016, 13, 36.	3.1	54
156	Linking synaptopathy and gray matter damage in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 146-149.	1.4	18
157	T helper 9 cells induced by plasmacytoid dendritic cells regulate interleukin-17Âin multiple sclerosis. Clinical Science, 2015, 129, 291-303.	1.8	55
158	The p38 mitogenâ€activated protein kinase cascade modulates T helper type 17 differentiation and functionality in multiple sclerosis. Immunology, 2015, 146, 251-263.	2.0	24
159	Exploring the role of microglia in mood disorders associated with experimental multiple sclerosis. Frontiers in Cellular Neuroscience, 2015, 9, 243.	1.8	15
160	Treatment Decisions for Patients With Active Multiple Sclerosis. JAMA Neurology, 2015, 72, 387.	4.5	3
161	FAS-ligand regulates differential activation-induced cell death of human T-helper 1 and 17 cells in healthy donors and multiple sclerosis patients. Cell Death and Disease, 2015, 6, e1741-e1741.	2.7	28
162	Dopaminergic dysfunction is associated with IL-1Î ² -dependent mood alterations in experimental autoimmune encephalomyelitis. Neurobiology of Disease, 2015, 74, 347-358.	2.1	42

#	Article	IF	CITATIONS
163	Subclinical central inflammation is risk for RIS and CIS conversion to MS. Multiple Sclerosis Journal, 2015, 21, 1443-1452.	1.4	58
164	The autonomic balance predicts cardiac responses after the first dose of fingolimod. Multiple Sclerosis Journal, 2015, 21, 206-216.	1.4	29
165	Achieving patient engagement in multiple sclerosis: A perspective from the multiple sclerosis in the 21st Century Steering Group. Multiple Sclerosis and Related Disorders, 2015, 4, 202-218.	0.9	85
166	Natalizumab discontinuation in patients with multiple sclerosis: Profiling risk and benefits at therapeutic crossroads. Multiple Sclerosis Journal, 2015, 21, 1713-1722.	1.4	23
167	ll-1β Dependent Cerebellar Synaptopathy in a Mouse Mode of Multiple Sclerosis. Cerebellum, 2015, 14, 19-22.	1.4	26
168	Reversible hyporegenerative anemia during natalizumab treatment. Multiple Sclerosis Journal, 2015, 21, 257-258.	1.4	5
169	Role of amyloid-Î ² CSF levels in cognitive deficit in MS. Clinica Chimica Acta, 2015, 449, 23-30.	0.5	27
170	Paroxysmal dysarthria–ataxia syndrome resolving after fingolimod treatment. Journal of the Neurological Sciences, 2015, 350, 101-102.	0.3	7
171	Epstein-Barr virus genetic variants are associated with multiple sclerosis. Neurology, 2015, 84, 1362-1368.	1.5	44
172	Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathologica, 2015, 130, 279-295.	3.9	160
173	Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nature Reviews Neurology, 2015, 11, 711-724.	4.9	204
174	Placebo Effects in a Multiple Sclerosis Spasticity Enriched Clinical Trial with the Oromucosal Cannabinoid Spray (<scp>THC</scp> / <scp>CBD</scp>): Dimension and Possible Causes. CNS Neuroscience and Therapeutics, 2015, 21, 215-221.	1.9	10
175	The interplay between inflammatory cytokines and the endocannabinoid system in the regulation of synaptic transmission. Neuropharmacology, 2015, 96, 105-112.	2.0	27
176	Less Frequent and Less Severe Flu-Like Syndrome in Interferon Beta-1a Treated Multiple Sclerosis Patients with at Least One Allele Bearing the G>C Polymorphism at Position -174 of the IL-6 Promoter Gene. PLoS ONE, 2015, 10, e0135441.	1.1	3
177	Behavioral and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli. Frontiers in Behavioral Neuroscience, 2014, 8, 183.	1.0	9
178	Interleukin-1Î ² causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Molecular Neurodegeneration, 2014, 9, 56.	4.4	78
179	K Index in cerebrospinal fluid: a valid tool in multiple sclerosis diagnosis. Rivista Italiana Della Medicina Di Laboratorio, 2014, 10, 167-171.	0.2	1
180	Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals. Translational Psychiatry, 2014, 4, e417-e417.	2.4	47

#	Article	IF	CITATIONS
181	CB1 receptor affects cortical plasticity and response to physiotherapy in multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e48.	3.1	17
182	Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 851-858.	0.9	101
183	Functional connectivity changes within specific networks parallel the clinical evolution of multiple sclerosis Journal, 2014, 20, 1050-1057.	1.4	47
184	Advances in the Management of Multiple Sclerosis Spasticity: Multiple Sclerosis Spasticity Nervous Pathways. European Neurology, 2014, 72, 6-8.	0.6	11
185	Cortical plasticity predicts recovery from relapse in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 451-457.	1.4	63
186	From High- to Low-Frequency Administered Interferon-Beta for Multiple Sclerosis: A Multicenter Study. European Neurology, 2014, 71, 233-241.	0.6	4
187	Pre- and postsynaptic type-1 cannabinoid receptors control the alterations of glutamate transmission in experimental autoimmune encephalomyelitis. Neuropharmacology, 2014, 79, 567-572.	2.0	28
188	Interleukin-1β Promotes Long-Term Potentiation in Patients with Multiple Sclerosis. NeuroMolecular Medicine, 2014, 16, 38-51.	1.8	64
189	Guidelines on the clinical use for the detection of neutralizing antibodies (NAbs) to IFN beta in multiple sclerosis therapy: report from the Italian Multiple Sclerosis Study group. Neurological Sciences, 2014, 35, 307-316.	0.9	30
190	Disability in multiple sclerosis: When synaptic long-term potentiation fails. Neuroscience and Biobehavioral Reviews, 2014, 43, 88-99.	2.9	32
191	Peripheral B cell depletion and central proinflammatory cytokine reduction following repeated intrathecal administration of rituximab in progressive Multiple Sclerosis. Journal of Neuroimmunology, 2014, 276, 229-231.	1.1	28
192	Interleukin-8 is associated with acute and persistent dysfunction after optic neuritis. Multiple Sclerosis Journal, 2014, 20, 1841-1850.	1.4	17
193	Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Multiple Sclerosis Journal, 2014, 20, 304-312.	1.4	117
194	Synaptic plasticity in multiple sclerosis and in experimental autoimmune encephalomyelitis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130162.	1.8	43
195	Treatment Options to Reduce Disease Activity After Natalizumab: Paradoxical Effects of Corticosteroids. CNS Neuroscience and Therapeutics, 2014, 20, 748-753.	1.9	10
196	CD19 as a molecular target in CNS autoimmunity. Acta Neuropathologica, 2014, 128, 177-190.	3.9	22
197	Growth Factors and Synaptic Plasticity in Relapsing–Remitting Multiple Sclerosis. NeuroMolecular Medicine, 2014, 16, 490-498.	1.8	18
198	Safety of the first dose of fingolimod for multiple sclerosis: results of an open-label clinical trial. BMC Neurology, 2014, 14, 65.	0.8	47

#	Article	IF	CITATIONS
199	Cerebrospinal fluid detection of interleukin- $1\hat{l}^2$ in phase of remission predicts disease progression in multiple sclerosis. Journal of Neuroinflammation, 2014, 11, 32.	3.1	70
200	Phlebographic Study Does Not Show Differences Between Patients with MS and Control Subjects. American Journal of Neuroradiology, 2014, 35, 1174-1179.	1.2	0
201	Effect of glatiramer acetate on disease reactivation in <scp>MS</scp> patients discontinuing natalizumab. European Journal of Neurology, 2013, 20, 87-94.	1.7	41
202	Interleukin-1Â Alters Clutamate Transmission at Purkinje Cell Synapses in a Mouse Model of Multiple Sclerosis. Journal of Neuroscience, 2013, 33, 12105-12121.	1.7	125
203	<i>InÂvitro</i> and <i>inÂvivo</i> models of <scp>H</scp> untington's disease show alterations in the endocannabinoid system. FEBS Journal, 2013, 280, 3376-3388.	2.2	37
204	Future MS care: a consensus statement of the MS in the 21st Century Steering Group. Journal of Neurology, 2013, 260, 462-469.	1.8	27
205	Clatiramer Acetate Protects Against Inflammatory Synaptopathy in Experimental Autoimmune Encephalomyelitis. Journal of NeuroImmune Pharmacology, 2013, 8, 651-663.	2.1	22
206	Pharyngeal Electrical Stimulation for Dysphagia Associated with Multiple Sclerosis: A Pilot Study. Brain Stimulation, 2013, 6, 418-423.	0.7	50
207	Interleukin-1 ^{î2} alters the sensitivity of cannabinoid CB1 receptors controlling glutamate transmission in the striatum. Neuroscience, 2013, 250, 232-239.	1.1	33
208	Laquinimod prevents inflammation-induced synaptic alterations occurring in experimental autoimmune encephalomyelitis. Multiple Sclerosis Journal, 2013, 19, 1084-1094.	1.4	43
209	Anatomical brain connectivity can assess cognitive dysfunction in multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 1161-1168.	1.4	33
210	A genetic variant of the anti-apoptotic protein Akt predicts natalizumab-induced lymphocytosis and post-natalizumab multiple sclerosis reactivation. Multiple Sclerosis Journal, 2013, 19, 59-68.	1.4	21
211	Transcranial Direct Current Stimulation Ameliorates Tactile Sensory Deficit in Multiple Sclerosis. Brain Stimulation, 2013, 6, 654-659.	0.7	54
212	Effects of endocannabinoid and endovanilloid systems on aversive memory extinction. Behavioural Brain Research, 2013, 256, 101-107.	1.2	47
213	Cladribine interferes with IL-1Î ² synaptic effects in experimental multiple sclerosis. Journal of Neuroimmunology, 2013, 264, 8-13.	1.1	23
214	Short interval intracortical facilitation correlates with the degree of disability inÂmultiple sclerosis. Brain Stimulation, 2013, 6, 67-71.	0.7	34
215	Determination of kFLC and K Index in cerebrospinal fluid: A valid alternative to assessintrathecal immunoglobulin synthesis. Journal of Neuroimmunology, 2013, 263, 116-120.	1.1	66
216	Abnormal <scp>NMDA</scp> receptor function exacerbates experimental autoimmune encephalomyelitis. British Journal of Pharmacology, 2013, 168, 502-517.	2.7	39

#	Article	IF	CITATIONS
217	Observational case-control study of the prevalence of chronic cerebrospinal venous insufficiency in multiple sclerosis: results from the CoSMo study. Multiple Sclerosis Journal, 2013, 19, 1508-1517.	1.4	42
218	Increased CD8+ T Cell Response to Epstein-Barr Virus Lytic Antigens in the Active Phase of Multiple Sclerosis. PLoS Pathogens, 2013, 9, e1003220.	2.1	132
219	Synaptic Plasticity and PDGF Signaling Defects Underlie Clinical Progression in Multiple Sclerosis. Journal of Neuroscience, 2013, 33, 19112-19119.	1.7	70
220	Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis. Annals of Neurology, 2013, 73, 626-636.	2.8	83
221	Oxidative modifications of cerebral transthyretin are associated with multiple sclerosis. Proteomics, 2013, 13, 1002-1009.	1.3	22
222	Inflammation Subverts Hippocampal Synaptic Plasticity in Experimental Multiple Sclerosis. PLoS ONE, 2013, 8, e54666.	1.1	123
223	Association between a Genetic Variant of Type-1 Cannabinoid Receptor and Inflammatory Neurodegeneration in Multiple Sclerosis. PLoS ONE, 2013, 8, e82848.	1.1	21
224	Opposite Roles of NMDA Receptors in Relapsing and Primary Progressive Multiple Sclerosis. PLoS ONE, 2013, 8, e67357.	1.1	29
225	Brain Hemodynamic Changes Associated with Chronic Cerebrospinal Venous Insufficiency Are Not Specific to Multiple Sclerosis and Do Not Increase Its Severity. Radiology, 2012, 265, 233-239.	3.6	42
226	Severe relapses under fingolimod treatment prescribed after natalizumab. Neurology, 2012, 79, 2004-2005.	1.5	55
227	Prevalence and Management of Panic Attacks during Infliximab Infusion in Psoriatic Patients. Dermatology, 2012, 225, 236-241.	0.9	5
228	Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity. Brain, 2012, 135, 3320-3335.	3.7	67
229	TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Experimental Neurology, 2012, 237, 296-303.	2.0	126
230	Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease. Neurobiology of Aging, 2012, 33, 767-785.	1.5	202
231	Effects of palmitoylation of Cys ⁴¹⁵ in helix 8 of the CB ₁ cannabinoid receptor on membrane localization and signalling. British Journal of Pharmacology, 2012, 165, 2635-2651.	2.7	50
232	Interleukin-1β Causes Anxiety by Interacting with the Endocannabinoid System. Journal of Neuroscience, 2012, 32, 13896-13905.	1.7	96
233	Patient adherence to and tolerability of self-administered interferon $\hat{1}^2$ -1a using an electronic autoinjection device: a multicentre, open-label, phase IV study. BMC Neurology, 2012, 12, 7.	0.8	50
234	TRPV1 Channels Regulate Cortical Excitability in Humans. Journal of Neuroscience, 2012, 32, 873-879.	1.7	75

#	Article	IF	CITATIONS
235	Inflammation inhibits GABA transmission in multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 1633-1635.	1.4	74
236	Differences in Spontaneously Avoiding or Approaching Mice Reflect Differences in CB1-Mediated Signaling of Dorsal Striatal Transmission. PLoS ONE, 2012, 7, e33260.	1.1	11
237	Prevalence study of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis: preliminary data. Radiologia Medica, 2012, 117, 855-864.	4.7	12
238	LETTER TO THE EDITOR. Brain Pathology, 2012, 22, 79-79.	2.1	1
239	Oral fingolimod rescues the functional deficits of synapses in experimental autoimmune encephalomyelitis. British Journal of Pharmacology, 2012, 165, 861-869.	2.7	67
240	GABAergic signaling and connectivity on Purkinje cells are impaired in experimental autoimmune encephalomyelitis. Neurobiology of Disease, 2012, 46, 414-424.	2.1	41
241	Interleukinâ€1β causes synaptic hyperexcitability in multiple sclerosis. Annals of Neurology, 2012, 71, 76-83.	2.8	178
242	Early treatment with high-dose interferon beta-1a reverses cognitive and cortical plasticity deffits in multiple sclerosis. Functional Neurology, 2012, 27, 163-8.	1.3	33
243	Painful and involuntary multiple sclerosis. Expert Opinion on Pharmacotherapy, 2011, 12, 763-777.	0.9	11
244	Potential role of IL-13 in neuroprotection and cortical excitability regulation in multiple sclerosis. Multiple Sclerosis Journal, 2011, 17, 1301-1312.	1.4	54
245	Impaired inter-hemispheric facilitatory connectivity in schizophrenia. Clinical Neurophysiology, 2011, 122, 512-517.	0.7	18
246	Impaired striatal GABA transmission in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2011, 25, 947-956.	2.0	90
247	Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2011, 25, 1242-1248.	2.0	64
248	Loss of striatal cannabinoid CB1 receptor function in attentionâ€deficit / hyperactivity disorder mice with pointâ€mutation of the dopamine transporter. European Journal of Neuroscience, 2011, 34, 1369-1377.	1.2	23
249	Functional characterization of putative cholesterol binding sequence (CRAC) in human typeâ€1 cannabinoid receptor. Journal of Neurochemistry, 2011, 116, 858-865.	2.1	88
250	Cannabinoid receptor signalling in neurodegenerative diseases: a potential role for membrane fluidity disturbance. British Journal of Pharmacology, 2011, 163, 1379-1390.	2.7	37
251	Before or after does it matter? Different protocols of environmental enrichment differently influence motor, synaptic and structural deficits of cerebellar origin. Neurobiology of Disease, 2011, 42, 9-20.	2.1	35
252	Transient receptor potential vanilloid 1 channels modulate the synaptic effects of TNF-α and of IL-1β in experimental autoimmune encephalomyelitis. Neurobiology of Disease, 2011, 43, 669-677.	2.1	56

#	Article	IF	CITATIONS
253	Transcranial magnetic stimulation primes the effects of exercise therapy in multiple sclerosis. Journal of Neurology, 2011, 258, 1281-1287.	1.8	107
254	Natalizumab therapy of multiple sclerosis: recommendations of the Multiple Sclerosis Study Group—Italian Neurological Society. Neurological Sciences, 2011, 32, 351-358.	0.9	17
255	Proposed chronic cerebrospinal venous insufficiency criteria do not predict multiple sclerosis risk or severity. Annals of Neurology, 2011, 70, 52-59.	2.8	89
256	Genetic variants of the NMDA receptor influence cortical excitability and plasticity in humans. Journal of Neurophysiology, 2011, 106, 1637-1643.	0.9	57
257	The (AAT) _n repeat of the cannabinoid CB ₁ receptor gene influences disease progression in relapsing multiple sclerosis. Multiple Sclerosis Journal, 2011, 17, 281-288.	1.4	24
258	Quality of life, depression and fatigue in mildly disabled patients with relapsing–remitting multiple sclerosis receiving subcutaneous interferon beta-1a: 3-year results from the COGIMUS (COGnitive) Tj ETQq0 0 0	rg B.]4/Ove	rlo ¢% 10 Tf 50
259	Cognitive and Cortical Plasticity Deficits Correlate with Altered Amyloid-β CSF Levels in Multiple Sclerosis. Neuropsychopharmacology, 2011, 36, 559-568.	2.8	95
260	Risk of acute promyelocytic leukemia in multiple sclerosis. Neurology, 2011, 76, 1059-1065.	1.5	37
261	T Regulatory Cells Are Markers of Disease Activity in Multiple Sclerosis Patients. PLoS ONE, 2011, 6, e21386.	1.1	64
262	Cognitive deficits in experimental autoimmune encephalomyelitis: neuroinflammation and synaptic degeneration. Neurological Sciences, 2010, 31, 255-259.	0.9	65
263	Considerations on discontinuing natalizumab for the treatment of multiple sclerosis. Annals of Neurology, 2010, 68, 409-411.	2.8	40
264	Effects of caffeine on striatal neurotransmission: Focus on cannabinoid CB1 receptors. Molecular Nutrition and Food Research, 2010, 54, 525-531.	1.5	13
265	Effects of intermittent theta burst stimulation on spasticity in patients with multiple sclerosis. European Journal of Neurology, 2010, 17, 295-300.	1.7	104
266	The link between inflammation, synaptic transmission and neurodegeneration in multiple sclerosis. Cell Death and Differentiation, 2010, 17, 1083-1091.	5.0	161
267	Preservation of Striatal Cannabinoid CB1 Receptor Function Correlates with the Antianxiety Effects of Fatty Acid Amide Hydrolase Inhibition. Molecular Pharmacology, 2010, 78, 260-268.	1.0	73
268	Brain-Derived Neurotrophic Factor Controls Cannabinoid CB1 Receptor Function in the Striatum. Journal of Neuroscience, 2010, 30, 8127-8137.	1.7	59
269	Multiparametric MR investigation of the motor pyramidal system in patients with â€~truly benign' multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 178-188.	1.4	12
270	Differential patterns of interhemispheric functional disconnection in mild and advanced multiple sclerosis Journal, 2010, 16, 1308-1316.	1.4	21

#	Article	IF	CITATIONS
271	Role of Aberrant Striatal Dopamine D ₁ Receptor/cAMP/Protein Kinase A/DARPP32 Signaling in the Paradoxical Calming Effect of Amphetamine. Journal of Neuroscience, 2010, 30, 11043-11056.	1.7	66
272	Voluntary Exercise and Sucrose Consumption Enhance Cannabinoid CB1 Receptor Sensitivity in the Striatum. Neuropsychopharmacology, 2010, 35, 374-387.	2.8	74
273	Abnormal mGlu 5 Receptor/Endocannabinoid Coupling in Mice Lacking FMRP and BC1 RNA. Neuropsychopharmacology, 2010, 35, 1500-1509.	2.8	104
274	Protein profiling of Guillain–Barrè syndrome cerebrospinal fluid by two-dimensional electrophoresis and mass spectrometry. Neuroscience Letters, 2010, 485, 49-54.	1.0	28
275	Abnormal activity of the Na/Ca exchanger enhances glutamate transmission in experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2010, 24, 1379-1385.	2.0	26
276	Transient receptor potential vanilloid 1 channels control acetylcholine/2-arachidonoylglicerol coupling in the striatum. Neuroscience, 2010, 167, 864-871.	1.1	33
277	The endocannabinoid system in the inflammatory and neurodegenerative processes of multiple sclerosis and of amyotrophic lateral sclerosis. Experimental Neurology, 2010, 224, 92-102.	2.0	63
278	Effects of Anodal Transcranial Direct Current Stimulation on Chronic Neuropathic Pain in Patients With Multiple Sclerosis. Journal of Pain, 2010, 11, 436-442.	0.7	215
279	Abnormal sensitivity of cannabinoid CB1 receptors in the striatum of mice with experimental amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 83-90.	2.3	20
280	The use of repetitive transcranial magnetic stimulation (rTMS) for the treatment of spasticity. Progress in Brain Research, 2009, 175, 429-439.	0.9	57
281	Inflammation Triggers Synaptic Alteration and Degeneration in Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2009, 29, 3442-3452.	1.7	331
282	Abnormal brain lateralization and connectivity in Schizophrenia. Reviews in the Neurosciences, 2009, 20, 61-70.	1.4	59
283	Cognitive impairment and its relation with disease measures in mildly disabled patients with relapsing–remitting multiple sclerosis: baseline results from the Cognitive Impairment in Multiple Sclerosis (COGIMUS) study. Multiple Sclerosis Journal, 2009, 15, 779-788.	1.4	172
284	D-Aspartate: An Atypical Amino Acid with Neuromodulatory Activity in Mammals. Reviews in the Neurosciences, 2009, 20, 429-40.	1.4	30
285	ALTERED ANANDAMIDE DEGRADATION IN ATTENTION-DEFICIT/HYPERACTIVITY DISORDER. Neurology, 2009, 72, 1526-1527.	1.5	25
286	Antiacquaporin 4 antibodies detection by different techniques in neuromyelitis optica patients. Multiple Sclerosis Journal, 2009, 15, 1153-1163.	1.4	63
287	Exercise attenuates the clinical, synaptic and dendritic abnormalities of experimental autoimmune encephalomyelitis. Neurobiology of Disease, 2009, 36, 51-59.	2.1	108
288	Cannabis-based treatment induces polarity-reversing plasticity assessed by theta burst stimulation in humans. Brain Stimulation, 2009, 2, 229-233.	0.7	24

#	Article	IF	CITATIONS
289	Lack of effect of cannabis-based treatment on clinical and laboratory measures in multiple sclerosis. Neurological Sciences, 2009, 30, 531-534.	0.9	45
290	Adaptations of Striatal Endocannabinoid System During Stress. Molecular Neurobiology, 2009, 39, 178-184.	1.9	7
291	Lipid rafts regulate 2â€∎rachidonoylglycerol metabolism and physiological activity in the striatum. Journal of Neurochemistry, 2009, 109, 371-381.	2.1	44
292	Effects of levetiracetam on chronic pain in multiple sclerosis: results of a pilot, randomized, placebo ontrolled study. European Journal of Neurology, 2009, 16, 360-366.	1.7	66
293	Caffeine drinking potentiates cannabinoid transmission in the striatum: Interaction with stress effects. Neuropharmacology, 2009, 56, 590-597.	2.0	23
294	TRPV1 channels facilitate glutamate transmission in the striatum. Molecular and Cellular Neurosciences, 2009, 40, 89-97.	1.0	124
295	A Substrate Trapping Mutant Form of Striatal-Enriched Protein Tyrosine Phosphatase Prevents Amphetamine-Induced Stereotypies and Long-Term Potentiation in the Striatum. Biological Psychiatry, 2009, 65, 637-645.	0.7	24
296	Use of arsenic trioxide in secondary acute promyelocytic leukemia developing after treatment of multiple sclerosis with mitoxantrone. Leukemia and Lymphoma, 2009, 50, 1217-1218.	0.6	5
297	Abnormal parieto-motor connectivity in Tuberous Sclerosis Complex. Epilepsy Research, 2009, 87, 102-105.	0.8	8
298	Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nature Neuroscience, 2008, 11, 152-159.	7.1	276
299	Adaptations of glutamatergic synapses in the striatum contribute to recovery from cerebellar damage. European Journal of Neuroscience, 2008, 27, 2188-2196.	1.2	25
300	Abnormal Striatal GABA Transmission in the Mouse Model for the Fragile X Syndrome. Biological Psychiatry, 2008, 63, 963-973.	0.7	157
301	Connectivity Between Posterior Parietal Cortex and Ipsilateral Motor Cortex Is Altered in Schizophrenia. Biological Psychiatry, 2008, 64, 815-819.	0.7	51
302	Increased levels of d-aspartate in the hippocampus enhance LTP but do not facilitate cognitive flexibility. Molecular and Cellular Neurosciences, 2008, 37, 236-246.	1.0	79
303	The GTP-binding protein Rhes modulates dopamine signalling in striatal medium spiny neurons. Molecular and Cellular Neurosciences, 2008, 37, 335-345.	1.0	68
304	NF-kB/NOS cross-talk induced by mitochondrial complex II inhibition: Implications for Huntington's disease. Neuroscience Letters, 2008, 434, 241-246.	1.0	40
305	Type-1 cannabinoid receptors colocalize with caveolin-1 in neuronal cells. Neuropharmacology, 2008, 54, 45-50.	2.0	46
306	Improvement of hand dexterity following motor cortex rTMS in multiple sclerosis patients with cerebellar impairment. Multiple Sclerosis Journal, 2008, 14, 995-998.	1.4	61

#	Article	IF	CITATIONS
307	Chronic Psychoemotional Stress Impairs Cannabinoid-Receptor-Mediated Control of GABA Transmission in the Striatum. Journal of Neuroscience, 2008, 28, 7284-7292.	1.7	101
308	d-Aspartate Prevents Corticostriatal Long-Term Depression and Attenuates Schizophrenia-Like Symptoms Induced by Amphetamine and MK-801. Journal of Neuroscience, 2008, 28, 10404-10414.	1.7	106
309	Early relapses after the first dose of natalizumab in active multiple sclerosis patients. Multiple Sclerosis Journal, 2008, 14, 1137-1138.	1.4	11
310	The Endocannabinoid System in Peripheral Lymphocytes as a Mirror of Neuroinflammatory Diseases. Current Pharmaceutical Design, 2008, 14, 2370-2382.	0.9	83
311	The Brain Cytoplasmic RNA BC1 Regulates Dopamine D2 Receptor-Mediated Transmission in the Striatum. Journal of Neuroscience, 2007, 27, 8885-8892.	1.7	46
312	Mechanisms of Disease: basic-research-driven investigations in humans—the case of hyperkinetic disorders. Nature Clinical Practice Neurology, 2007, 3, 572-580.	2.7	15
313	Effects of motor cortex rTMS on lower urinary tract dysfunction in multiple sclerosis. Multiple Sclerosis Journal, 2007, 13, 269-271.	1.4	86
314	Na + /Ca 2+ Exchanger Maintains Ionic Homeostasis in the Peri-Infarct Area. Stroke, 2007, 38, 1614-1620.	1.0	11
315	The (Endo)Cannabinoid System in Multiple Sclerosis and Amyotrophic Lateral Sclerosis. International Review of Neurobiology, 2007, 82, 171-186.	0.9	24
316	The endocannabinoid system is dysregulated in multiple sclerosis and in experimental autoimmune encephalomyelitis. Brain, 2007, 130, 2543-2553.	3.7	185
317	Repetitive transcranial magnetic stimulation of the motor cortex ameliorates spasticity in multiple sclerosis. Neurology, 2007, 68, 1045-1050.	1.5	152
318	Saving the Ischemic Penumbra: Potential Role for Statins and Phosphodiesterase Inhibitors. Current Vascular Pharmacology, 2007, 5, 259-265.	0.8	9
319	Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood, 2007, 110, 1225-1232.	0.6	1,074
320	The endocannabinoid system in targeting inflammatory neurodegenerative diseases. Trends in Pharmacological Sciences, 2007, 28, 180-187.	4.0	165
321	The endocannabinoid pathway in Huntington's disease: A comparison with other neurodegenerative diseases. Progress in Neurobiology, 2007, 81, 349-379.	2.8	109
322	Interaction of A2A adenosine and D2 dopamine receptors modulates corticostriatal glutamatergic transmission. Neuropharmacology, 2007, 53, 783-789.	2.0	53
323	Endocannabinoids limit metabotropic glutamate 5 receptor-mediated synaptic inhibition of striatal principal neurons. Molecular and Cellular Neurosciences, 2007, 35, 302-310.	1.0	34
324	Chronic cocaine sensitizes striatal GABAergic synapses to the stimulation of cannabinoid CB1 receptors. European Journal of Neuroscience, 2007, 25, 1631-1640.	1.2	37

#	Article	IF	CITATIONS
325	Synaptic plasticity during recovery from permanent occlusion of the middle cerebral artery. Neurobiology of Disease, 2007, 27, 44-53.	2.1	63
326	Low frequency rTMS of the SMA transiently ameliorates peak-dose LID in Parkinson's disease. Clinical Neurophysiology, 2006, 117, 1917-1921.	0.7	85
327	Chronic Cocaine Prevents Depotentiation at Corticostriatal Synapses. Biological Psychiatry, 2006, 60, 436-443.	0.7	43
328	NR2B-containing NMDA receptors promote the neurotoxic effects of 3-nitropropionic acid but not of rotenone in the striatum. Experimental Neurology, 2006, 202, 470-479.	2.0	27
329	l-DOPA treatment of parkinsonian rats changes the expression of Src, Lyn and PKC kinases. Neuroscience Letters, 2006, 398, 211-214.	1.0	18
330	Deficits of glutamate transmission in the striatum of toxic and genetic models of Huntington's disease. Neuroscience Letters, 2006, 410, 6-10.	1.0	15
331	Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity. Neuroscience, 2006, 140, 897-911.	1.1	84
332	Deficits of glutamate transmission in the striatum of experimental hemiballism. Neuroscience, 2006, 143, 213-221.	1.1	7
333	NR2B Subunit Exerts a Critical Role in Postischemic Synaptic Plasticity. Stroke, 2006, 37, 1895-1901.	1.0	63
334	Removing Pathogenic Memories: A Neurobiology of Psychotherapy. Molecular Neurobiology, 2005, 32, 123-132.	1.9	50
335	CSF from MS patients can induce acute conduction block in the isolated optic nerve. European Journal of Neurology, 2005, 12, 45-48.	1.7	5
336	Improvement of choreic movements by 1Hz repetitive transcranial magnetic stimulation in Huntington's disease patients. Annals of Neurology, 2005, 58, 655-656.	2.8	49
337	Striatal synaptic plasticity: Implications for motor learning and Parkinson's disease. Movement Disorders, 2005, 20, 395-402.	2.2	141
338	rTMS of supplementary motor area modulates therapy-induced dyskinesias in Parkinson disease. Neurology, 2005, 65, 623-625.	1.5	139
339	Pathological Synaptic Plasticity in the Striatum: Implications for Parkinson's Disease. NeuroToxicology, 2005, 26, 779-783.	1.4	80
340	Modulatory action of metabotropic glutamate receptor (mGluR) 5 on mGluR1 function in striatal cholinergic interneurons. Neuropharmacology, 2005, 49, 104-113.	2.0	64
341	Long-term potentiation and memory processes in the psychological works of Sigmund Freud and in the formation of neuropsychiatric symptoms. Neuroscience, 2005, 130, 559-565.	1.1	6
342	Subthalamic nucleus lesion reverses motor abnormalities and striatal glutamatergic overactivity in experimental parkinsonism. Neuroscience, 2005, 133, 831-840.	1.1	54

#	Article	IF	CITATIONS
343	Abnormal Sensitivity to Cannabinoid Receptor Stimulation Might Contribute to Altered Gamma-Aminobutyric Acid Transmission in the Striatum of R6/2 Huntington's Disease Mice. Biological Psychiatry, 2005, 57, 1583-1589.	0.7	79
344	Cortical hyperexcitability in post-traumatic stress disorder secondary to minor accidental head trauma: a neurophysiologic study. Journal of Psychiatry and Neuroscience, 2005, 30, 127-32.	1.4	17
345	Engagement of Rat Striatal Neurons by Cortical Epileptiform Activity Investigated With Paired Recordings. Journal of Neurophysiology, 2004, 92, 2725-2737.	0.9	9
346	Chronic Haloperidol Promotes Corticostriatal Long-Term Potentiation by Targeting Dopamine D2L Receptors. Journal of Neuroscience, 2004, 24, 8214-8222.	1.7	90
347	Therapeutic doses of L-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism. Brain, 2004, 127, 1661-1669.	3.7	78
348	A Critical Interaction between Dopamine D2 Receptors and Endocannabinoids Mediates the Effects of Cocaine on Striatal GABAergic Transmission. Neuropsychopharmacology, 2004, 29, 1488-1497.	2.8	139
349	Abnormal Ca2+-Calmodulin-Dependent Protein Kinase II Function Mediates Synaptic and Motor Deficits in Experimental Parkinsonism. Journal of Neuroscience, 2004, 24, 5283-5291.	1.7	136
350	The Project for a Scientific Psychology (1895): a Freudian anticipation of LTP-memory connection theory. Brain Research Reviews, 2004, 46, 310-314.	9.1	24
351	Early ionic and membrane potential changes caused by the pesticide rotenone in striatal cholinergic interneurons. Experimental Neurology, 2004, 185, 169-181.	2.0	20
352	Metabotropic glutamate receptors and striatal synaptic plasticity: implications for neurological diseases. Progress in Neurobiology, 2004, 74, 271-300.	2.8	139
353	Induction of corticostriatal LTP by 3-nitropropionic acid requires the activation of mGluR1/PKC pathway. Neuropharmacology, 2004, 46, 761-769.	2.0	18
354	Differential contribution of dopamine D2S and D2L receptors in the modulation of glutamate and GABA transmission in the striatum. Neuroscience, 2004, 129, 157-166.	1.1	77
355	Inhibition of mitochondrial complex II alters striatal expression of genes involved in glutamatergic and dopaminergic signaling: possible implications for Huntington's disease. Neurobiology of Disease, 2004, 15, 407-414.	2.1	24
356	Neuronal vulnerability following inhibition of mitochondrial complex II: a possible ionic mechanism for Huntington's disease. Molecular and Cellular Neurosciences, 2004, 25, 9-20.	1.0	47
357	Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation. Clinical Neurophysiology, 2004, 115, 956-965.	0.7	106
358	The Concept of "Neuroprotection" in Neurological Diseases. Current Neuropharmacology, 2004, 2, 261-263.	1.4	0
359	Synaptic plasticity in the ischaemic brain. Lancet Neurology, The, 2003, 2, 622-629.	4.9	139
360	Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Annals of Neurology, 2003, 53, 693-702.	2.8	125

#	Article	IF	CITATIONS
361	Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. Journal of Neurochemistry, 2003, 85, 1018-1025.	2.1	145
362	Voltageâ€dependent membrane potential oscillations of rat striatal fastâ€spiking interneurons. Journal of Physiology, 2003, 549, 121-130.	1.3	75
363	Loss of bidirectional striatal synaptic plasticity in L-DOPA–induced dyskinesia. Nature Neuroscience, 2003, 6, 501-506.	7.1	791
364	Lamotrigine and remacemide protect striatal neurons against in vitro ischemia: an electrophysiological study. Experimental Neurology, 2003, 182, 461-469.	2.0	18
365	Corticostriatal LTP requires combined mGluR1 and mGluR5 activation. Neuropharmacology, 2003, 44, 8-16.	2.0	86
366	Targeting striatal cholinergic interneurons in Parkinson's disease: Focus on metabotropic glutamate receptors. Neuropharmacology, 2003, 45, 45-56.	2.0	85
367	Excitation by dopamine of rat subthalamic nucleus neurones in vitro—a direct action with unconventional pharmacology. Neuroscience, 2003, 116, 157-166.	1.1	35
368	lonotropic glutamate receptors: still a target for neuroprotection in brain ischemia? insights from in vitro studies. Neurobiology of Disease, 2003, 12, 82-88.	2.1	40
369	Dopamine, Acetylcholine and Nitric Oxide Systems Interact to Induce Corticostriatal Synaptic Plasticity. Reviews in the Neurosciences, 2003, 14, 207-16.	1.4	110
370	Distinct Roles of D ₁ and D ₅ Dopamine Receptors in Motor Activity and Striatal Synaptic Plasticity. Journal of Neuroscience, 2003, 23, 8506-8512.	1.7	213
371	Receptor Subtypes Involved in the Presynaptic and Postsynaptic Actions of Dopamine on Striatal Interneurons. Journal of Neuroscience, 2003, 23, 6245-6254.	1.7	209
372	Activation of β1-Adrenoceptors Excites Striatal Cholinergic Interneurons through a cAMP-Dependent, Protein Kinase-Independent Pathway. Journal of Neuroscience, 2003, 23, 5272-5282.	1.7	45
373	Striatal metabotropic glutamate receptor function following experimental parkinsonism and chronic levodopa treatment. Brain, 2002, 125, 2635-2645.	3.7	76
374	Tissue plasminogen activator is required for striatal post-ischemic synaptic potentiation. NeuroReport, 2002, 13, 115-118.	0.6	12
375	Postâ€ischaemic longâ€term synaptic potentiation in the striatum: a putative mechanism for cell typeâ€specific vulnerability. Brain, 2002, 125, 844-860.	3.7	64
376	Experimental Parkinsonism Modulates Multiple Genes Involved in the Transduction of Dopaminergic Signals in the Striatum. Neurobiology of Disease, 2002, 10, 387-395.	2.1	43
377	Dopamine Excites Fast-Spiking Interneurons in the Striatum. Journal of Neurophysiology, 2002, 87, 2190-2194.	0.9	140
378	Endogenous Dopamine Amplifies Ischemic Long-Term Potentiation via D1 Receptors. Stroke, 2002, 33, 2978-2984.	1.0	27

#	Article	IF	CITATIONS
379	Metabotropic Glutamate 2 Receptors Modulate Synaptic Inputs and Calcium Signals in Striatal Cholinergic Interneurons. Journal of Neuroscience, 2002, 22, 6176-6185.	1.7	67
380	Experimental Parkinsonism Alters Endocannabinoid Degradation: Implications for Striatal Glutamatergic Transmission. Journal of Neuroscience, 2002, 22, 6900-6907.	1.7	303
381	Cocaine and Amphetamine Depress Striatal GABAergic Synaptic Transmission through D2 Dopamine Receptors. Neuropsychopharmacology, 2002, 26, 164-175.	2.8	78
382	Dopamine D2 Receptor-Mediated Inhibition of Dopaminergic Neurons in Mice Lacking D2L Receptors. Neuropsychopharmacology, 2002, 27, 723-726.	2.8	79
383	Activation of dopamine D1-like receptors excites LTS interneurons of the striatum. European Journal of Neuroscience, 2002, 15, 2049-2052.	1.2	69
384	Tissue plasminogen activator is required for corticostriatal long-term potentiation. European Journal of Neuroscience, 2002, 16, 713-721.	1.2	52
385	Dopamine-Dependent Long-Term Potentiation Induced by 3-Nitropropionic Acid in Striatal Medium Spiny Neurons. Advances in Behavioral Biology, 2002, , 187-190.	0.2	0
386	Impaired Excitatory Transmission in the Striatum of Rats Chronically Intoxicated with Manganese. Experimental Neurology, 2001, 172, 469-476.	2.0	29
387	Selective Blockade of Type-1 Metabotropic Glutamate Receptors Induces Neuroprotection by Enhancing Gabaergic Transmission. Molecular and Cellular Neurosciences, 2001, 17, 1071-1083.	1.0	92
388	A Synaptic Mechanism Underlying the Behavioral Abnormalities Induced by Manganese Intoxication. Neurobiology of Disease, 2001, 8, 419-432.	2.1	72
389	Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience, 2001, 106, 579-587.	1.1	292
390	Ionic mechanisms underlying differential vulnerability to ischemia in striatal neurons. Progress in Neurobiology, 2001, 63, 687-696.	2.8	59
391	Functional coexpression of excitatory mGluR1 and mGluR5 on striatal cholinergic interneurons. Neuropharmacology, 2001, 40, 460-463.	2.0	55
392	Selective involvement of mGlu1 receptors in corticostriatal LTD. Neuropharmacology, 2001, 40, 839-846.	2.0	104
393	Inhibition of Mitochondrial Complex II Induces a Long-Term Potentiation of NMDA-Mediated Synaptic Excitation in the Striatum Requiring Endogenous Dopamine. Journal of Neuroscience, 2001, 21, 5110-5120.	1.7	152
394	Stimulation of Nitric Oxide–cGMP Pathway Excites Striatal Cholinergic Interneurons via Protein Kinase G Activation. Journal of Neuroscience, 2001, 21, 1393-1400.	1.7	44
395	An abnormal striatal synaptic plasticity may account for the selective neuronal vulnerability in Huntington's disease. Neurological Sciences, 2001, 22, 61-62.	0.9	14
396	Dopaminergic control of synaptic plasticity in the dorsal striatum. European Journal of Neuroscience, 2001, 13, 1071-1077.	1.2	319

#	Article	IF	CITATIONS
397	Adenosine-mediated inhibition of striatal GABAergic synaptic transmission during in vitro ischaemia. Brain, 2001, 124, 1855-1865.	3.7	38
398	Activation of metabotropic glutamate receptor subtype 1/protein kinase C/mitogen-activated protein kinase pathway is required for postischemic long-term potentiation in the striatum. Molecular Pharmacology, 2001, 60, 808-15.	1.0	32
399	Receptor and post-receptor mechanisms of ischemic long-term potentiation in the striatum. Functional Neurology, 2001, 16, 149-52.	1.3	3
400	Tissue plasminogen activator controls multiple forms of synaptic plasticity and memory. European Journal of Neuroscience, 2000, 12, 1002-1012.	1.2	158
401	Involvement of Intracellular Calcium Stores during Oxygen/Glucose Deprivation in Striatal Large Aspiny Interneurons. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 839-846.	2.4	28
402	Cell-type specificity of mGluR activation in striatal neuronal subtypes. Amino Acids, 2000, 19, 119-129.	1.2	28
403	Dopamine and cAMP-Regulated Phosphoprotein 32 kDa Controls Both Striatal Long-Term Depression and Long-Term Potentiation, Opposing Forms of Synaptic Plasticity. Journal of Neuroscience, 2000, 20, 8443-8451.	1.7	337
404	Activation of D2-Like Dopamine Receptors Reduces Synaptic Inputs to Striatal Cholinergic Interneurons. Journal of Neuroscience, 2000, 20, RC69-RC69.	1.7	144
405	Is Pharmacological Neuroprotection Dependent on Reduced Glutamate Release?. Stroke, 2000, 31, 766-773.	1.0	71
406	Cellular factors controlling neuronal vulnerability in the brain. Neurology, 2000, 55, 1249-1255.	1.5	111
407	Electrophysiology of Sipatrigine: A Lamotrigine Derivative Exhibiting Neuroprotective Effects. Experimental Neurology, 2000, 162, 171-179.	2.0	11
408	Acetylcholine-mediated modulation of striatal function. Trends in Neurosciences, 2000, 23, 120-126.	4.2	400
409	Synaptic transmission in the striatum: from plasticity to neurodegeneration. Progress in Neurobiology, 2000, 61, 231-265.	2.8	254
410	Electrophysiology of dopamine in normal and denervated striatal neurons. Trends in Neurosciences, 2000, 23, S57-S63.	4.2	145
411	Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity?. Annals of Neurology, 2000, 47, S60-8; discussion S68-9.	2.8	79
412	Clutamate-Triggered Events Inducing Corticostriatal Long-Term Depression. Journal of Neuroscience, 1999, 19, 6102-6110.	1.7	87
413	A Critical Role of the Nitric Oxide/cGMP Pathway in Corticostriatal Long-Term Depression. Journal of Neuroscience, 1999, 19, 2489-2499.	1.7	218
414	Unilateral Dopamine Denervation Blocks Corticostriatal LTP. Journal of Neurophysiology, 1999, 82, 3575-3579.	0.9	214

#	Article	IF	CITATIONS
415	Electrophysiological Recordings and Calcium Measurements in Striatal Large Aspiny Interneurons in Response to Combined O ₂ /Glucose Deprivation. Journal of Neurophysiology, 1999, 81, 2508-2516.	0.9	46
416	An in vitro electrophysiological study on the effects of phenytoin, lamotrigine and gabapentin on striatal neurons. British Journal of Pharmacology, 1999, 126, 689-696.	2.7	65
417	Permissive role of interneurons in corticostriatal synaptic plasticity. Brain Research Reviews, 1999, 31, 1-5.	9.1	86
418	Modulation of gene expression following long-term synaptic depression in the striatum. Molecular Brain Research, 1999, 72, 89-96.	2.5	26
419	Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP. Neuropharmacology, 1999, 38, 323-326.	2.0	118
420	Neurophysiology of Parkinson's disease: from basic research to clinical correlates. Clinical Neurophysiology, 1999, 110, 2006-2013.	0.7	17
421	Metabotropic Glutamate Receptors and Cell-Type-Specific Vulnerability in the Striatum: Implication for Ischemia and Huntington's Disease. Experimental Neurology, 1999, 158, 97-108.	2.0	99
422	Sodium Influx Plays a Major Role in the Membrane Depolarization Induced by Oxygen and Glucose Deprivation in Rat Striatal Spiny Neurons. Stroke, 1999, 30, 171-179.	1.0	70
423	Muscarinic IPSPs in rat striatal cholinergic interneurones. Journal of Physiology, 1998, 510, 421-427.	1.3	83
424	Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation. European Journal of Neuroscience, 1998, 10, 2887-2895.	1.2	133
425	Hypoglycemia, Hypoxia, and Ischemia in a Corticostriatal Slice Preparation: Electrophysiologic Changes and Ascorbyl Radical Formation. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 868-875.	2.4	19
426	Blockade of M2-like muscarinic receptors enhances long-term potentiation at corticostriatal synapses. European Journal of Neuroscience, 1998, 10, 3020-3023.	1.2	89
427	Striatal spiny neurons and cholinergic interneurons express differential ionotropic glutamatergic responses and vulnerability: Implications for ischemia and Huntington's disease. Annals of Neurology, 1998, 43, 586-597.	2.8	126
428	Electrophysiology of the neuroprotective agent riluzole on striatal spiny neurons. Neuropharmacology, 1998, 37, 1063-1070.	2.0	39
429	Activation of Group III Metabotropic Glutamate Receptors Depresses Glutamatergic Transmission at Corticostriatal Synapse. Neuropharmacology, 1997, 36, 845-851.	2.0	99
430	Opposite Membrane Potential Changes Induced by Glucose Deprivation in Striatal Spiny Neurons and in Large Aspiny Interneurons. Journal of Neuroscience, 1997, 17, 1940-1949.	1.7	65
431	Endogenous Adenosine Mediates the Presynaptic Inhibition Induced by Aglycemia at Corticostriatal Synapses. Journal of Neuroscience, 1997, 17, 4509-4516.	1.7	67
432	Abnormal Synaptic Plasticity in the Striatum of Mice Lacking Dopamine D2 Receptors. Journal of Neuroscience, 1997, 17, 4536-4544.	1.7	279

#	Article	IF	CITATIONS
433	A Possible Mechanism for the Aglycemia-Induced Depression of Glutamatergic Excitation in the Striatum. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 1121-1126.	2.4	14
434	Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. British Journal of Pharmacology, 1997, 120, 1007-1014.	2.7	193
435	Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum. Neuroscience and Biobehavioral Reviews, 1997, 21, 519-523.	2.9	96
436	Role of Ca2+in striatal LTD and LTP. Seminars in Neuroscience, 1996, 8, 321-328.	2.3	28
437	Clarity on Cannabinoid-Based Products in Medicine. European Medical Journal Neurology, 0, , .	0.0	1
438	Abnormal sensitivity of cannabinoid CB1 receptors in the striatum of mice with experimental amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 0, , 1-8.	2.3	5
439	Usability of an application device for nabiximols oromucosal spray in patients with upper limb impaired multiple sclerosis. Neurodegenerative Disease Management, 0, , .	1.2	ο