List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6410239/publications.pdf Version: 2024-02-01

	34105	16650
39,420	52	123
citations	h-index	g-index
131	131	39104
docs citations	times ranked	citing authors
	39,420 citations 131 docs citations	39,420 citations 52 h-index 131 docs citations 131 times ranked

HEDVÃO RIOTTIEDE

#	Article	IF	CITATIONS
1	Roseburia, a decreased bacterial taxon in the gut microbiota of patients suffering from anorexia nervosa. European Journal of Clinical Nutrition, 2022, , .	2.9	6
2	SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 2021, 80, 37-49.	1.0	498
3	Fecal Microbiota Transplant from Human to Mice Gives Insights into the Role of the Gut Microbiota in Non-Alcoholic Fatty Liver Disease (NAFLD). Microorganisms, 2021, 9, 199.	3.6	33
4	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	27.8	102
5	Extracellular Vesicles Produced by the Probiotic Propionibacterium freudenreichii CIRM-BIA 129 Mitigate Inflammation by Modulating the NF-ήB Pathway. Frontiers in Microbiology, 2020, 11, 1544.	3.5	45
6	Alternative stable states in the intestinal ecosystem: proof of concept in a rat model and a perspective of therapeutic implications. Microbiome, 2020, 8, 153.	11.1	21
7	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	27.8	283
8	Impact of pemetrexed chemotherapy on the gut microbiota and intestinal inflammation of patient-lung-derived tumor xenograft (PDX) mouse models. Scientific Reports, 2020, 10, 9094.	3.3	11
9	Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Review of Neurotherapeutics, 2019, 19, 1037-1050.	2.8	116
10	Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism. Metabolomics, 2019, 15, 140.	3.0	26
11	Identification of the novel role of butyrate as AhR ligand in human intestinal epithelial cells. Scientific Reports, 2019, 9, 643.	3.3	111
12	A Guide for Ex Vivo Handling and Storage of Stool Samples Intended for Fecal Microbiota Transplantation. Scientific Reports, 2019, 9, 8897.	3.3	40
13	Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism. FASEB Journal, 2019, 33, 7126-7142.	0.5	36
14	Prediction of the intestinal resistome by a three-dimensional structure-based method. Nature Microbiology, 2019, 4, 112-123.	13.3	129
15	SCFAs strongly stimulate PYY production in human enteroendocrine cells. Scientific Reports, 2018, 8, 74.	3.3	262
16	Butyrate Produced by Commensal Bacteria Down-Regulates Indolamine 2,3-Dioxygenase 1 (IDO-1) Expression via a Dual Mechanism in Human Intestinal Epithelial Cells. Frontiers in Immunology, 2018, 9, 2838.	4.8	74
17	Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Scientific Reports, 2018, 8, 9742.	3.3	142
18	Humans as holobionts: implications for prevention and therapy. Microbiome, 2018, 6, 81.	11.1	114

#	Article	IF	CITATIONS
19	A Data Integration Multi-Omics Approach to Study Calorie Restriction-Induced Changes in Insulin Sensitivity. Frontiers in Physiology, 2018, 9, 1958.	2.8	39
20	A fibrolytic potential in the human ileum mucosal microbiota revealed by functional metagenomic. Scientific Reports, 2017, 7, 40248.	3.3	38
21	Energy balance and obesity: what are the main drivers?. Cancer Causes and Control, 2017, 28, 247-258.	1.8	455
22	Commensal gut bacteria modulate phosphorylation-dependent PPARÎ ³ transcriptional activity in human intestinal epithelial cells. Scientific Reports, 2017, 7, 43199.	3.3	66
23	The gut bacterium and pathobiont Bacteroides vulgatus activates NF-κB in a human gut epithelial cell line in a strain and growth phase dependent manner. Anaerobe, 2017, 47, 209-217.	2.1	55
24	Human Gut Metagenomics: Success and Limits of the Activity-Based Approaches. , 2017, , 161-178.		0
25	The Enterococcus faecalis virulence factor ElrA interacts with the human Four-and-a-Half LIM Domains Protein 2. Scientific Reports, 2017, 7, 4581.	3.3	9
26	TLR ligands and butyrate increase <i>Pyy</i> expression through two distinct but inter-regulated pathways. Cellular Microbiology, 2017, 19, e12648.	2.1	71
27	Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535, 376-381.	27.8	1,506
28	<i>Akkermansia muciniphila</i> and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut, 2016, 65, 426-436.	12.1	1,379
29	Lactobacillus rhamnosus CNCMI-4317 Modulates Fiaf/Angptl4 in Intestinal Epithelial Cells and Circulating Level in Mice. PLoS ONE, 2015, 10, e0138880.	2.5	22
30	The Impact of ATRA on Shaping Human Myeloid Cell Responses to Epithelial Cell-Derived Stimuli and on T-Lymphocyte Polarization. Mediators of Inflammation, 2015, 2015, 1-14.	3.0	10
31	Functional metagenomics to decipher food–microbe–host crosstalk. Proceedings of the Nutrition Society, 2015, 74, 1-4.	1.0	15
32	The influence of diet on the gut microbiota and its consequences for health. Current Opinion in Biotechnology, 2015, 32, 195-199.	6.6	148
33	Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metabolism, 2015, 22, 320-331.	16.2	345
34	Metagenomics of the human intestinal tract: from who is there to what is done there. Current Opinion in Food Science, 2015, 4, 64-68.	8.0	12
35	Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, 528, 262-266.	27.8	1,627
36	Commensal Streptococcus salivarius Modulates PPARÎ ³ Transcriptional Activity in Human Intestinal Epithelial Cells. PLoS ONE, 2015, 10, e0125371.	2.5	60

#	Article	IF	CITATIONS
37	Milk Fermented with a 15-Lipoxygenase-1-Producing Lactococcus Lactis Alleviates Symptoms of colitis in a Murine Model. Current Pharmaceutical Biotechnology, 2015, 16, 424-429.	1.6	28
38	A Robust and Adaptable High Throughput Screening Method to Study Host-Microbiota Interactions in the Human Intestine. PLoS ONE, 2014, 9, e105598.	2.5	11
39	The Laminin Response in Inflammatory Bowel Disease: Protection or Malignancy?. PLoS ONE, 2014, 9, e111336.	2.5	46
40	Impact of high-fat feeding on basic helix–loop–helix transcription factors controlling enteroendocrine cell differentiation. International Journal of Obesity, 2014, 38, 1440-1448.	3.4	26
41	Genome Sequence of " <i>Candidatus</i> Arthromitus―sp. Strain SFB-Mouse-NL, a Commensal Bacterium with a Key Role in Postnatal Maturation of Gut Immune Functions. Genome Announcements, 2014, 2, .	0.8	35
42	Anti-Inflammatory Properties of Streptococcus salivarius, a Commensal Bacterium of the Oral Cavity and Digestive Tract. Applied and Environmental Microbiology, 2014, 80, 928-934.	3.1	151
43	Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 2014, 32, 822-828.	17.5	909
44	An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology, 2014, 32, 834-841.	17.5	1,664
45	Human intestinal metagenomics: state of the art and future. Current Opinion in Microbiology, 2013, 16, 232-239.	5.1	62
46	The <scp>NF</scp> â€₽ <scp>B</scp> binding site located in the proximal region of the <scp>TSLP</scp> promoter is critical for <scp>TSLP</scp> modulation in human intestinal epithelial cells. European Journal of Immunology, 2013, 43, 1053-1062.	2.9	46
47	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	27.8	3,641
48	Dietary intervention impact on gut microbial gene richness. Nature, 2013, 500, 585-588.	27.8	1,485
49	A metagenomic insight into our gut's microbiome. Gut, 2013, 62, 146-158.	12.1	302
50	ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways. American Journal of Physiology - Renal Physiology, 2013, 304, G1025-G1037.	3.4	76
51	High-Throughput System for the Presentation of Secreted and Surface-Exposed Proteins from Gram-Positive Bacteria in Functional Metagenomics Studies. PLoS ONE, 2013, 8, e65956.	2.5	14
52	Functional Metagenomics of Bacterial-Cell Crosstalk. , 2013, , 1-6.		0
53	Butyrate Produced by Commensal Bacteria Potentiates Phorbol Esters Induced AP-1 Response in Human Intestinal Epithelial Cells. PLoS ONE, 2012, 7, e52869.	2.5	70
54	Anti-inflammatory properties of dairy lactobacilli. Inflammatory Bowel Diseases, 2012, 18, 657-666.	1.9	68

#	Article	IF	CITATIONS
55	Enterotypes of the human gut microbiome. Nature, 2011, 473, 174-180.	27.8	5,800
56	Inhibition of the NF-κB Pathway in Human Intestinal Epithelial Cells by Commensal Streptococcus salivarius. Applied and Environmental Microbiology, 2011, 77, 4681-4684.	3.1	88
57	Identification of NF-κB Modulation Capabilities within Human Intestinal Commensal Bacteria. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-9.	3.0	66
58	The clinical Pseudomonas fluorescens MFN1032 strain exerts a cytotoxic effect on epithelial intestinal cells and induces Interleukin-8 via the AP-1 signaling pathway. BMC Microbiology, 2010, 10, 215.	3.3	45
59	A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464, 59-65.	27.8	9,342
60	Functional Metagenomics: A High Throughput Screening Method to Decipher Microbiota-Driven NF-κB Modulation in the Human Gut. PLoS ONE, 2010, 5, e13092.	2.5	72
61	Degraded Carrageenan Causing Colitis in Rats Induces TNF Secretion and ICAM-1 Upregulation in Monocytes through NF-I ^g B Activation. PLoS ONE, 2010, 5, e8666.	2.5	52
62	<i>Faecalibacterium prausnitzii</i> is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16731-16736.	7.1	3,581
63	Development of High-Throughput Phenotyping of Metagenomic Clones from the Human Gut Microbiome for Modulation of Eukaryotic Cell Growth. Applied and Environmental Microbiology, 2007, 73, 3734-3737.	3.1	56
64	Comparative capacities of the pig colon and duodenum for luminal iron absorption. Canadian Journal of Physiology and Pharmacology, 2007, 85, 185-192.	1.4	43
65	Effects of agmatine accumulation in human colon carcinoma cells on polyamine metabolism, DNA synthesis and the cell cycle. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1745, 111-123.	4.1	38
66	Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochimica Et Biophysica Acta - General Subjects, 2005, 1725, 201-212.	2.4	157
67	Growth inhibitory effect of celecoxib and rofecoxib on human colorectal carcinoma cell lines. Anticancer Research, 2005, 25, 225-33.	1.1	12
68	Butyrate specifically modulatesMUCgene expression in intestinal epithelial goblet cells deprived of glucose. American Journal of Physiology - Renal Physiology, 2004, 287, G1168-G1174.	3.4	253
69	Raw potato starch and short-chain fructo-oligosaccharides affect the composition and metabolic activity of rat intestinal microbiota differently depending on the caecocolonic segment involved. Journal of Applied Microbiology, 2003, 94, 312-320.	3.1	60
70	Cyclo-oxygenase-2 over-expression in sporadic colorectal carcinoma without lymph node involvement. Alimentary Pharmacology and Therapeutics, 2003, 18, 731-740.	3.7	8
71	Molecular mechanisms involved in the antiproliferative effect of two COX-2 inhibitors, nimesulide and NS-398, on colorectal cancer cell lines. Digestive and Liver Disease, 2003, 35, 557-565.	0.9	18
72	Identification of secreted CD155 isoforms. Biochemical and Biophysical Research Communications, 2003, 309, 175-182.	2.1	59

#	Article	IF	CITATIONS
73	Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proceedings of the Nutrition Society, 2003, 62, 101-106.	1.0	190
74	Fructooligosaccharide associated with celecoxib reduces the number of aberrant crypt foci in the colon of rats. Reproduction, Nutrition, Development, 2003, 43, 347-356.	1.9	10
75	Functional mapping of NPY/PYY receptors in rat and human gastro-intestinal tract. Peptides, 2002, 23, 1765-1771.	2.4	31
76	Effects of glutamine deprivation on protein synthesis in a model of human enterocytes in culture. American Journal of Physiology - Renal Physiology, 2001, 281, G1340-G1347.	3.4	33
77	Butyrate metabolism upstream and downstream acetyl-CoA synthesis and growth control of human colon carcinoma cells. FEBS Journal, 2000, 267, 6435-6442.	0.2	66
78	Short-chain fatty acids induce cytoskeletal and extracellular protein modifications associated with modulation of proliferation on primary culture of rat intestinal smooth muscle cells. Digestive Diseases and Sciences, 2000, 45, 1623-1630.	2.3	23
79	Pathways and receptors involved in peptide YY induced contraction of rat proximal colonic muscle in vitro. Gut, 2000, 46, 370-375.	12.1	21
80	Butyrate inhibits inflammatory responses through NFkappa B inhibition: implications for Crohn's disease. Gut, 2000, 47, 397-403.	12.1	1,060
81	Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut, 2000, 46, 507-514.	12.1	243
82	Prolonged Intake of Fructo-Oligosaccharides Induces a Short-Term Elevation of Lactic Acid-Producing Bacteria and a Persistent Increase in Cecal Butyrate in Rats. Journal of Nutrition, 1999, 129, 2231-2235.	2.9	180
83	Biological Properties of Ulvan, a New Source of Green Seaweed Sulfated Polysaccharides, on Cultured Normal and Cancerous Colonic Epithelial Cells. Planta Medica, 1999, 65, 527-531.	1.3	126
84	Lack of interleukin 10 regulation of antigen presentation-associated molecules expressed on colonic epithelial cells. European Journal of Clinical Investigation, 1999, 29, 48-55.	3.4	19
85	Enhancement of butyrate production in the rat caecocolonic tract by long-term ingestion of resistant potato starch. British Journal of Nutrition, 1999, 82, 419-426.	2.3	73
86	Elevated plasma leptin concentrations in early stages of experimental intestinal inflammation in rats. Gut, 1998, 43, 783-790.	12.1	132
87	Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. American Journal of Physiology - Renal Physiology, 1998, 275, G1415-G1422.	3.4	159
88	Molecular mechanisms of butyrate action on HT-29 intestinal epithelial cell proliferation. Reproduction, Nutrition, Development, 1998, 38, 211-211.	1.9	0
89	Effects of Short-Chain Fatty Acids on Gastrointestinal Motility. Scandinavian Journal of Gastroenterology, 1997, 32, 58-61.	1.5	135
90	Butyrate Stimulates Cyclin D and p21 and Inhibits Cyclin-Dependent Kinase 2 Expression in HT-29 Colonic Epithelial Cells. Biochemical and Biophysical Research Communications, 1997, 232, 169-172.	2.1	89

#	Article	IF	CITATIONS
91	TREATMENT OF RAT PROXIMAL AND DISTAL COLONIC CELLS WITH SODIUM ORTHOVANADATE ENHANCES THEIR ADHESION AND SURVIVAL IN PRIMARY CULTURE. Cell Biology International, 1997, 21, 303-314.	3.0	12
92	COMPARISON OF THE EFFECT OF DIFFERENT SHORT CHAIN FATTY ACIDS ON THE GROWTH AND DIFFERENTIATION OF HUMAN COLONIC CARCINOMA CELL LINESIN VITRO. Cell Biology International, 1997, 21, 281-287.	3.0	56
93	Rise in cytosolic Ca ²⁺ concentration induced by P ₂ â€purinoceptor activation in isolated myocytes from the rat gastrointestinal tract. British Journal of Pharmacology, 1996, 117, 775-780.	5.4	15
94	Butyrate enhances major histocompatibility complex class I, HLA-DR and ICAM-1 antigen expression on differentiated human intestinal epithelial cells. European Journal of Clinical Investigation, 1996, 26, 803-810.	3.4	21
95	Inhibition of acetylcholine induced intestinal motility by interleukin 1 beta in the rat Gut, 1996, 39, 470-474.	12.1	52
96	In vitro contractile effects of short chain fatty acids in the rat terminal ileum Gut, 1996, 38, 53-58.	12.1	39
97	Utilization of activated U937 monocytic cells as a model to evaluate biocompatibility and biodegradation of synthetic calcium phosphate. Biomaterials, 1995, 16, 497-503.	11.4	29
98	Development of a Monoclonal Antibody Against Dentin Phosphophoryn: A Tool to Study Odontoblastic Activity. Hybridoma, 1994, 13, 143-146.	0.6	2
99	Monocyte activity in the presence of calcium phosphate activated by 1,25 (OH)2 VD3 and interferon-Î ³ . Biomaterials, 1994, 15, 25-30.	11.4	17
100	Analysis of the relationship between stage of differentiation and nk/lak susceptibility of colon carcinoma cells. International Journal of Cancer, 1993, 53, 409-417.	5.1	18
101	Characterization of a human monocyte antigen, B148.4, regulated during cell differentiation and activation. Journal of Leukocyte Biology, 1993, 53, 390-398.	3.3	10
102	Karyotypic and phenotypic variations between cell lines established from a primary colorectal tumour and two corresponding metastases from one patient. Invasion & Metastasis, 1993, 13, 253-66.	0.5	8
103	Identification and characterization of a rat protein (P 105) auto-antigenic in rats bearing a progressive syngeneic colon carcinoma. International Journal of Cancer, 1992, 50, 315-320.	5.1	1
104	Relationship between sensitivity to natural killer cells and MHC class-I antigen expression in colon carcinoma cell lines. International Journal of Cancer, 1992, 50, 659-664.	5.1	7
105	Involvement of histo-blood-group antigens in the susceptibility of colon carcinoma cells to natural killer-mediated cytotoxicity. International Journal of Cancer, 1992, 52, 609-618.	5.1	29
106	Possible involvement of TGF beta 1 in the distinct tumorigenic properties of two rat colon carcinoma clones. Invasion & Metastasis, 1992, 12, 185-96.	0.5	12
107	Human anti-murine immunoglobulin responses and immune functions in cancer patients receiving murine monoclonal antibody therapy. Human Antibodies, 1991, 2, 16-25.	1.5	19
108	Characterization, isolation and amino terminal sequencing of a rat colon carcinoma-associated antigen. International Journal of Cancer, 1991, 47, 903-908.	5.1	18

#	Article	IF	CITATIONS
109	Analysis of the state of differentiation of two rat colon carcinoma clones with distinct tumorigenic properties. Biology of the Cell, 1991, 72, 239-47.	2.0	3
110	Human anti-murine immunoglobulin responses and immune functions in cancer patients receiving murine monoclonal antibody therapy. Human Antibodies and Hybridomas, 1991, 2, 16-25.	0.1	8
111	A new tumor-associated antigen expressed on breast carcinomas, defined by monoclonal antibody BCA 227. Cancer Research, 1991, 51, 1537-43.	0.9	4
112	Humoral and cellular responses of colorectal cancer patients treated with monoclonal antibodies and interferon γ. Cancer Immunology, Immunotherapy, 1990, 32, 29-37.	4.2	16
113	Expression of blood group-related glycosidic tissue antigens on regressive and progressive variants of a rat colon carcinoma. Transplantation Proceedings, 1990, 22, 2551-2.	0.6	1
114	Immunoglobulin class and immunoglobulin G subclass analysis of human anti-mouse antibody response during monoclonal antibody treatment of cancer patients. Cancer Research, 1990, 50, 1051s-1054s.	0.9	7
115	Monoclonal antibodies to a rat colon carcinoma: model for monoclonal antibody therapy of solid tumors. Cancer Research, 1989, 49, 687-92.	0.9	16
116	Immune function of patients with gastrointestinal carcinoma after treatment with multiple infusions of monoclonal antibody 17.1A. Cancer Research, 1987, 47, 5238-41.	0.9	13
117	Neonatal Programming of Microbiota Composition: A Plausible Idea That Is Not Supported by the Evidence. Frontiers in Microbiology, 0, 13, .	3.5	3