
Anna Maria Senatore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6410019/publications.pdf Version: 2024-02-01

ANNA MARIA SENATORE

#	Article	IF	CITATIONS
1	A review on potentials and challenges of nanolubricants as promising lubricants for electric vehicles. Lubrication Science, 2022, 34, 1-29.	2.1	34
2	Changes in Food Choice, Taste, Desire, and Enjoyment 1 Year after Sleeve Gastrectomy: A Prospective Study. Nutrients, 2022, 14, 2060.	4.1	6
3	Investigation of the Tribological Properties of Different Textured Lead Bronze Coatings under Severe Load Conditions. Lubricants, 2021, 9, 34.	2.9	23
4	Tribological performance of low viscosity halogen-free ammonium based protic ionic liquids with carboxylate anions as neat lubricants. Tribology International, 2021, 160, 107058.	5.9	16
5	Anti-Friction and Anti-Wear Surfactant-Assisted Nano-Carbons Stable Formulations for Easy Industrialization. Tribology Online, 2021, 16, 1-15.	0.9	3
6	Tribological Behavior of Novel CNTs-Based Lubricant Grease in Steady-State and Fretting Sliding Conditions. Lubricants, 2021, 9, 107.	2.9	12
7	Three-Dimensional Finite Element Analysis of Contact Problem in Dry Friction Clutches. Lubricants, 2021, 9, 115.	2.9	5
8	Real-time identification of dry-clutch frictional torque in automated transmissions at launch condition. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 586-598.	1.9	8
9	Effect of Sliding Speed on the Thermal Stresses of Single-Disk Friction Clutches. Journal of Failure Analysis and Prevention, 2020, 20, 1534-1540.	0.9	5
10	Effect of Sliding Speed on the Thermal Fields and Frictional Behaviours of Asbestos-free Frictional Materials Used for Dry Clutch System. IOP Conference Series: Materials Science and Engineering, 2020, 881, 012086.	0.6	3
11	One-step "green―synthesis of dispersable carbon quantum dots/poly (methyl methacrylate) nanocomposites for tribological applications. Tribology International, 2020, 148, 106311.	5.9	22
12	rGO/GO Nanosheets in Tribology: From the State of the Art to the Future Prospective. Lubricants, 2020, 8, 31.	2.9	21
13	"Green―Synthesis of Nanocarbons for Reduced Friction and Wear. Lubricants, 2020, 8, 13.	2.9	2
14	Simulation and Experimental Validation of Novel Trajectory Planning Strategy to Reduce Vibrations and Improve Productivity of Robotic Manipulator. Electronics (Switzerland), 2020, 9, 581.	3.1	6
15	Editorial: Special Issue "Automotive Tribology― Lubricants, 2020, 8, 48.	2.9	2
16	A real-time approach to robust identification of tyre–road friction characteristics on mixed- <i>μ</i> roads. Vehicle System Dynamics, 2019, 57, 1338-1362.	3.7	38
17	Thermal Compensation Control Strategy in Automated Dry Clutch Engagement Dynamics and Launch Manoeuvre. International Journal of Automotive Technology, 2019, 20, 1089-1101.	1.4	9
18	Numerical analysis of cam and follower based on the interactive design approach. International Journal on Interactive Design and Manufacturing, 2019, 13, 841-849.	2.2	9

#	Article	IF	CITATIONS
19	Lubrication Analyses of Cam and Flat-Faced Follower. Lubricants, 2019, 7, 31.	2.9	12
20	Dynamics and lubrication analyses of scotch yoke mechanism. International Journal on Interactive Design and Manufacturing, 2019, 13, 901-907.	2.2	3
21	One-step nanohybrid synthesis in waste cooking oil, for direct lower environmental impact and stable lubricant formulation. Tribology International, 2019, 135, 355-367.	5.9	12
22	Intelligent Control Strategy for Electric Motor Management to Improve Dry-Clutch Performance in Mild Hybrid Vehicles. , 2019, , .		0
23	Tyre Models for Online Identification in ADAS Applications. , 2019, , .		0
24	Electric Motor and Dry Clutch Control in Launch Manoeuvres of Mild-Hybrid Vehicles Based on AMT/DCT Transmissions. Exchanges: the Warwick Research Journal, 2019, 7, 65-81.	0.1	0
25	Delay-Dependent Criteria for Robust Dynamic Stability Control of Articulated Vehicles. Mechanisms and Machine Science, 2018, , 424-432.	0.5	8
26	A Dry Clutch Engagement Controller with Thermal Effects Compensation. , 2018, , .		1
27	Joint structure for the real-time estimation and control of automotive dry clutch engagement. IFAC-PapersOnLine, 2018, 51, 1062-1067.	0.9	5
28	Mild-Hybrid Electric Vehicle: EM management to prevent dry clutch overheating. , 2018, , .		1
29	A survey on modeling and engagement control for automotive dry clutch. Mechatronics, 2018, 55, 63-75.	3.3	32
30	Investigation of thermoelastic problem of multiple-disc friction clutches applying different thermal loads. Heat and Mass Transfer, 2018, 54, 3461-3471.	2.1	7
31	Mild-HEVs and Launch Management to Relieve Dry Clutch from Thermal Damage. , 2018, , .		1
32	Polyalkylene Glycol Based Lubricants and Tribological Behaviour: Role of Ionic Liquids and Graphene Oxide as Additives. Journal of Nanoscience and Nanotechnology, 2018, 18, 913-924.	0.9	7
33	Could electric motor in HEV assist vehicle launch and relief dry clutch from thermal damage?. , 2017, , ·		2
34	Tribological Characterization of SiC and B4C Manufactured by Plasma Pressure Compaction. Journal of Materials Engineering and Performance, 2017, 26, 5648-5659.	2.5	18
35	Tyre-Road Adherence Conditions Estimation for Intelligent Vehicle Safety Applications. Mechanisms and Machine Science, 2017, , 389-398.	0.5	13
36	Simulations of Engagement Control in Actuated Dry-Clutch: Influence of Frictional Response of Facing Materials. Applied Mechanics and Materials, 2017, 868, 15-20.	0.2	1

Anna Maria Senatore

#	Article	IF	CITATIONS
37	Frictional Behaviour and Engagement Control in Dry Clutch Based Automotive Transmissions. Vehicle Engineering, 2017, 4, 1.	3.0	9
38	Friction coefficient influence on the engagement uncertainty in dry-clutch AMT. , 2016, , .		11
39	Automotive dry-clutch control: Engagement tracking and FE thermal model. , 2016, , .		7
40	Simulation of engagement control in automotive dry-clutch and temperature field analysis through finite element model. Applied Thermal Engineering, 2016, 93, 958-966.	6.0	69
41	Temperature-dependent torque transmissibility characteristic for automotive dry dual clutches. , 2015, , .		1
42	Improvement of Traction Through mMPC in Linear Vehicle Dynamics Based on Electrohydraulic Dry-Clutch. Intelligent Industrial Systems, 2015, 1, 153-161.	1.0	6
43	Nanosheets of MoS ₂ â€oleylamine as hybrid filler for selfâ€lubricating polymer composites: Thermal, tribological, and mechanical properties. Polymer Composites, 2015, 36, 1124-1134.	4.6	45
44	Model predictive controller for the clutch engagement to limit the traction lag due to the engine torque build-up. , 2015, , .		2
45	Influence of the temperature on the dry-clutch engagement control in gear-shift manoeuvres. , 2015, , .		7
46	Multiple Constrained MPC Design for Automotive Dry Clutch Engagement. IEEE/ASME Transactions on Mechatronics, 2015, 20, 469-480.	5.8	61
47	Engine piston rings improvement through effective materials, advanced manufacturing methods and novel design shape. Industrial Lubrication and Tribology, 2014, 66, 298-305.	1.3	6
48	Oil Lubricant Tribological Behaviour Improvement Through Dispersion of Few Layer Graphene Oxide. Journal of Nanoscience and Nanotechnology, 2014, 14, 4960-4968.	0.9	54
49	Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditions. Wear, 2013, 297, 1103-1110.	3.1	89
50	New †chimie douce' approach to the synthesis of hybrid nanosheets of MoS ₂ on CNT and their anti-friction and anti-wear properties. Nanotechnology, 2013, 24, 125601.	2.6	51
51	Driveline Dynamics Simulation and Analysis of the Dry Clutch Friction-Induced Vibrations in the Eek Frequency Range. , 2013, , .		6
52	Advances in Piston Rings Modelling and Design. Recent Patents on Engineering, 2013, 7, 51-67.	0.4	12
53	Effect of an Improved Yasutomi Pressure-Viscosity Relationship on the Elastohydrodynamic Line Contact Problem. ISRN Tribology, 2013, 2013, 1-7.	0.4	0
54	Graphene Oxide Nanosheets as Effective Friction Modifier for Oil Lubricant: Materials, Methods, and Tribological Results. ISRN Tribology, 2013, 2013, 1-9.	0.4	101

#	Article	IF	CITATIONS
55	Optimization of manufacturing process effects on brake friction material wear. Journal of Composite Materials, 2012, 46, 2777-2791.	2.4	31
56	Modelling the cushion spring characteristic to enhance the automated dry-clutch performance: The temperature effect. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2012, 226, 1472-1482.	1.9	32
57	Energy Management and Control of a Moving Solar Roof for a Vehicle. , 2011, , .		4
58	Torque Transmissibility Assessment for Automotive Dry-Clutch Engagement. IEEE/ASME Transactions on Mechatronics, 2011, 16, 564-573.	5.8	148
59	An analytical solution and an experimental procedure forÂthermal field at the interface of dry sliding surfaces. Meccanica, 2011, 46, 589-595.	2.0	6
60	Experimental investigation and neural network prediction of brakes and clutch material frictional behaviour considering the sliding acceleration influence. Tribology International, 2011, 44, 1199-1207.	5.9	78
61	Advances in the Automotive Systems: An Overview of Dual-Clutch Transmissions. Recent Patents on Mechanical Engineering, 2010, 2, 93-101.	0.3	5
62	Advances in the Automotive Systems: An Overview of Dual-Clutch Transmissions. Recent Patents on Mechanical Engineering, 2009, 2, 93-101.	0.3	19
63	Modeling torque transmissibility for automotive dry clutch engagement. , 2008, , .		46
64	Approximate closedâ€form solution for the dynamical analysis of short bearings with couple stress fluid. Lubrication Science, 2007, 19, 247-267.	2.1	8
65	Measuring the natural frequencies of centrifugally tensioned beam with laser doppler vibrometer. Measurement: Journal of the International Measurement Confederation, 2006, 39, 628-633.	5.0	8
66	Piston Ring Behaviour Simulation Considering Mixed-Lubrication and Flexibility. , 2005, , 817.		2
67	Frictional Torque Behavior in Actively-Closed Actuated Dry Clutch: The Temperature Influence. Applied Mechanics and Materials, 0, 806, 240-248.	0.2	1
68	A Tribochemical Boost for Cu Based Lubricant Nano-Additive. Key Engineering Materials, 0, 813, 292-297.	0.4	2