Luis Guanter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6409993/publications.pdf

Version: 2024-02-01

18436 14,791 152 62 citations h-index papers

119 g-index 178 178 178 9047 docs citations times ranked citing authors all docs

18606

#	Article	IF	CITATIONS
1	Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1327-33.	3.3	741
2	Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sensing of Environment, 2009, 113, 2037-2051.	4.6	640
3	Artificially lit surface of Earth at night increasing in radiance and extent. Science Advances, 2017, 3, e1701528.	4.7	560
4	The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sensing, 2015, 7, 8830-8857.	1.8	529
5	Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 316-327.	2.7	518
6	Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmospheric Measurement Techniques, 2013, 6, 2803-2823.	1.2	480
7	OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 2017, 358, .	6.0	438
8	Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sensing of Environment, 2012, 121, 236-251.	4.6	436
9	Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50†years of progress. Remote Sensing of Environment, 2019, 231, 111177.	4.6	372
10	Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sensing of Environment, 2014, 147, 1-12.	4.6	361
11	Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sensing of Environment, 2018, 209, 808-823.	4.6	305
12	The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sensing of Environment, 2014, 152, 375-391.	4.6	287
13	Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 2019, 233, 111383.	4.6	276
14	Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: An assessment based on observational and modeling approaches. Remote Sensing of Environment, 2015, 166, 91-105.	4.6	263
15	Estimation of vegetation photosynthetic capacity from spaceâ€based measurements of chlorophyll fluorescence for terrestrial biosphere models. Global Change Biology, 2014, 20, 3727-3742.	4.2	260
16	Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130171.	1.2	245
17	Global Retrievals of Solarâ€Induced Chlorophyll Fluorescence With TROPOMI: First Results and Intersensor Comparison to OCOâ€2. Geophysical Research Letters, 2018, 45, 10456-10463.	1.5	242
18	Improving the monitoring of crop productivity using spaceborne solarâ€induced fluorescence. Global Change Biology, 2016, 22, 716-726.	4.2	240

#	Article	IF	CITATIONS
19	Satellite chlorophyll fluorescence measurements reveal largeâ€scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Global Change Biology, 2016, 22, 2979-2996.	4.2	225
20	Sunâ€induced fluorescence – a new probe of photosynthesis: First maps from the imaging spectrometerÂ <i>HyPlant</i> . Global Change Biology, 2015, 21, 4673-4684.	4.2	213
21	A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmospheric Measurement Techniques, 2015, 8, 2589-2608.	1.2	206
22	Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sensing of Environment, 2016, 187, 145-155.	4.6	185
23	New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY. Atmospheric Measurement Techniques, 2016, 9, 3939-3967.	1.2	180
24	Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sensing of Environment, 2016, 183, 154-169.	4.6	180
25	Red and far red Sunâ€induced chlorophyll fluorescence as a measure of plant photosynthesis. Geophysical Research Letters, 2015, 42, 1632-1639.	1.5	171
26	A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 2021, 7, .	4.7	160
27	Improved Fraunhofer Line Discrimination Method for Vegetation Fluorescence Quantification. IEEE Geoscience and Remote Sensing Letters, 2008, 5, 620-624.	1.4	158
28	Performance of Spectral Fitting Methods for vegetation fluorescence quantification. Remote Sensing of Environment, 2010, 114, 363-374.	4.6	154
29	Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature, 2014, 515, 394-397.	13.7	152
30	Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmospheric Measurement Techniques, 2015, 8, 1337-1352.	1.2	152
31	Satellite sunâ€induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indoâ€Gangetic Plains. Global Change Biology, 2018, 24, 4023-4037.	4.2	152
32	Comparison Between Fractional Vegetation Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of PROBA/CHRIS Data Over an Agricultural Area. Sensors, 2009, 9, 768-793.	2.1	134
33	Ready-to-Use Methods for the Detection of Clouds, Cirrus, Snow, Shadow, Water and Clear Sky Pixels in Sentinel-2 MSI Images. Remote Sensing, 2016, 8, 666.	1.8	130
34	Cloud-Screening Algorithm for ENVISAT/MERIS Multispectral Images. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 4105-4118.	2.7	125
35	Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring. International Journal of Applied Earth Observation and Geoinformation, 2013, 23, 132-141.	1.4	125
36	Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO ₂ retrievals. Atmospheric Measurement Techniques, 2012, 5, 2081-2094.	1.2	121

3

#	Article	IF	CITATIONS
37	Using field spectroscopy to assess the potential of statistical approaches for the retrieval of sun-induced chlorophyll fluorescence from ground and space. Remote Sensing of Environment, 2013, 133, 52-61.	4.6	121
38	The PRISMA imaging spectroscopy mission: overview and first performance analysis. Remote Sensing of Environment, 2021, 262, 112499.	4.6	121
39	Estimation of solar-induced vegetation fluorescence from space measurements. Geophysical Research Letters, 2007, 34, .	1.5	118
40	On the application of the MODTRAN4 atmospheric radiative transfer code to optical remote sensing. International Journal of Remote Sensing, 2009, 30, 1407-1424.	1.3	117
41	CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands. Biogeosciences, 2009, 6, 1181-1198.	1.3	115
42	Estimating crop primary productivity with Sentinel-2 and Landsat 8 using machine learning methods trained with radiative transfer simulations. Remote Sensing of Environment, 2019, 225, 441-457.	4.6	112
43	EeteS—The EnMAP End-to-End Simulation Tool. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 522-530.	2.3	109
44	Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model. Remote Sensing of Environment, 2019, 231, 110772.	4.6	109
45	Spectral calibration of hyperspectral imagery using atmospheric absorption features. Applied Optics, 2006, 45, 2360.	2.1	106
46	Estimating and understanding crop yields with explainable deep learning in the Indian Wheat Belt. Environmental Research Letters, 2020, 15, 024019.	2.2	104
47	Atmospheric correction of ENVISAT/MERIS data over inland waters: Validation for European lakes. Remote Sensing of Environment, 2010, 114, 467-480.	4.6	103
48	Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data. Remote Sensing of Environment, 2015, 156, 202-215.	4.6	98
49	Simulations of chlorophyll fluorescence incorporated into the <scp>C</scp> ommunity <scp>L</scp> and <scp>M</scp> odel version 4. Global Change Biology, 2015, 21, 3469-3477.	4.2	95
50	Developments for vegetation fluorescence retrieval from spaceborne highâ€resolution spectrometry in the O ₂ â€A and O ₂ â€B absorption bands. Journal of Geophysical Research, 2010, 115, .	3.3	92
51	Simulation of Optical Remote-Sensing Scenes With Application to the EnMAP Hyperspectral Mission. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47, 2340-2351.	2.7	91
52	On the relationship between sub-daily instantaneous and daily total gross primary production: Implications for interpreting satellite-based SIF retrievals. Remote Sensing of Environment, 2018, 205, 276-289.	4.6	91
53	A method for the surface reflectance retrieval from PROBA/CHRIS data over land: application to ESA SPARC campaigns. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 2908-2917.	2.7	90
54	Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Scientific Reports, 2016, 6, 37747.	1.6	83

#	Article	IF	CITATIONS
55	Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 2020, 240, 111722.	4.6	83
56	Assessing the potential of sun-induced fluorescence and the canopy scattering coefficient to track large-scale vegetation dynamics in Amazon forests. Remote Sensing of Environment, 2018, 204, 769-785.	4.6	81
57	Correction of systematic spatial noise in push-broom hyperspectral sensors: application to CHRIS/PROBA images. Applied Optics, 2008, 47, F46.	2.1	78
58	FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data. Remote Sensing of Environment, 2014, 147, 256-266.	4.6	78
59	Spaceâ€based remote imaging spectroscopy of the Aliso Canyon CH ₄ superemitter. Geophysical Research Letters, 2016, 43, 6571-6578.	1.5	76
60	Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data. Remote Sensing of Environment, 2007, 109, 54-65.	4.6	75
61	Spatially-explicit monitoring of crop photosynthetic capacity through the use of space-based chlorophyll fluorescence data. Remote Sensing of Environment, 2018, 210, 362-374.	4.6	69
62	Strong constraint on modelled global carbon uptake using solar-induced chlorophyll fluorescence data. Scientific Reports, 2018, 8, 1973.	1.6	69
63	Satellite-based survey of extreme methane emissions in the Permian basin. Science Advances, 2021, 7, .	4.7	66
64	A method for the atmospheric correction of ENVISAT/MERIS data over land targets. International Journal of Remote Sensing, 2007, 28, 709-728.	1.3	63
65	Satellite Observations of the Contrasting Response of Trees and Grasses to Variations in Water Availability. Geophysical Research Letters, 2019, 46, 1429-1440.	1.5	61
66	Coupled retrieval of aerosol optical thickness, columnar water vapor and surface reflectance maps from ENVISAT/MERIS data over land. Remote Sensing of Environment, 2008, 112, 2898-2913.	4.6	60
67	Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence. Agricultural and Forest Meteorology, 2019, 268, 189-201.	1.9	60
68	From Canopyâ€Leaving to Total Canopy Farâ€Red Fluorescence Emission for Remote Sensing of Photosynthesis: First Results From TROPOMI. Geophysical Research Letters, 2019, 46, 12030-12040.	1.5	59
69	Mapping methane point emissions with the PRISMA spaceborne imaging spectrometer. Remote Sensing of Environment, 2021, 265, 112671.	4.6	59
70	Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space. Atmospheric Measurement Techniques, 2019, 12, 5655-5668.	1.2	58
71	Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Scientific Reports, 2016, 6, 39748.	1.6	57
72	Sun-Induced Chlorophyll Fluorescence III: Benchmarking Retrieval Methods and Sensor Characteristics for Proximal Sensing. Remote Sensing, 2019, 11, 962.	1.8	57

#	Article	IF	CITATIONS
73	The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth System Science Data, 2021, 13, 5423-5440.	3.7	54
74	The High-Performance Airborne Imaging Spectrometer HyPlantâ€"From Raw Images to Top-of-Canopy Reflectance and Fluorescence Products: Introduction of an Automatized Processing Chain. Remote Sensing, 2019, 11, 2760.	1.8	53
75	A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth System Science Data, 2020, 12, 1101-1116.	3.7	52
76	Nonlinear Statistical Retrieval of Atmospheric Profiles From MetOp-IASI and MTG-IRS Infrared Sounding Data. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1759-1769.	2.7	50
77	Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers. Optics Express, 2009, 17, 11594.	1.7	49
78	Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences, 2017, 14, 3401-3429.	1.3	49
79	Simulation of Spatial Sensor Characteristics in the Context of the EnMAP Hyperspectral Mission. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48, 3046-3054.	2.7	48
80	Systematic Assessment of Retrieval Methods for Canopy Farâ€Red Solarâ€Induced Chlorophyll Fluorescence Using Highâ€Frequency Automated Field Spectroscopy. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005533.	1.3	47
81	Multitemporal Unmixing of Medium-Spatial-Resolution Satellite Images: A Case Study Using MERIS Images for Land-Cover Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 4308-4317.	2.7	45
82	Anomalous carbon uptake in Australia as seen by GOSAT. Geophysical Research Letters, 2015, 42, 8177-8184.	1.5	45
83	Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies. Agricultural and Forest Meteorology, 2020, 295, 108147.	1.9	43
84	Hyperspectral and Lidar Intensity Data Fusion: A Framework for the Rigorous Correction of Illumination, Anisotropic Effects, and Cross Calibration. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 2799-2810.	2.7	40
85	Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences, 2017, 14, 1969-1987.	1.3	40
86	Satellites Detect Abatable Super-Emissions in One of the World's Largest Methane Hotspot Regions. Environmental Science & Samp; Technology, 2022, 56, 2143-2152.	4.6	40
87	S2eteS: An End-to-End Modeling Tool for the Simulation of Sentinel-2 Image Products. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 5560-5571.	2.7	37
88	Retrieval of Atmospheric Parameters and Surface Reflectance from Visible and Shortwave Infrared Imaging Spectroscopy Data. Surveys in Geophysics, 2019, 40, 333-360.	2.1	36
89	Regularized Multiresolution Spatial Unmixing for ENVISAT/MERIS and Landsat/TM Image Fusion. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 844-848.	1.4	35
90	Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models. Remote Sensing of Environment, 2020, 249, 112030.	4.6	35

#	Article	IF	Citations
91	Characterization of fine resolution field spectrometers using solar Fraunhofer lines and atmospheric absorption features. Applied Optics, 2010, 49, 2858.	2.1	34
92	Reduction of Uncorrelated Striping Noise—Applications for Hyperspectral Pushbroom Acquisitions. Remote Sensing, 2014, 6, 11082-11106.	1.8	34
93	First Results From the PROBA/CHRIS Hyperspectral/Multiangular Satellite System Over Land and Water Targets. IEEE Geoscience and Remote Sensing Letters, 2005, 2, 250-254.	1.4	30
94	Simplified physically based retrieval of sun-induced chlorophyll fluorescence from GOSAT data. IEEE Geoscience and Remote Sensing Letters, 2015, 12, 1446-1450.	1.4	30
95	Improving Sensor Fusion: A Parametric Method for the Geometric Coalignment of Airborne Hyperspectral and Lidar Data. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 3460-3474.	2.7	29
96	Variability of sunâ€induced chlorophyll fluorescence according to stand ageâ€related processes in a managed loblolly pine forest. Global Change Biology, 2018, 24, 2980-2996.	4.2	29
97	Environmental Mapping and Analysis Program (EnMAP) - Recent Advances and Status. , 2008, , .		28
98	Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis. Biogeosciences, 2018, 15, 6221-6256.	1.3	28
99	Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite. Atmospheric Measurement Techniques, 2022, 15, 1657-1674.	1.2	28
100	The 2013 FLEXâ€"US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA. Remote Sensing, 2017, 9, 612.	1.8	27
101	Systematic Orbital Geometry-Dependent Variations in Satellite Solar-Induced Fluorescence (SIF) Retrievals. Remote Sensing, 2020, 12, 2346.	1.8	25
102	Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview. Hydrology and Earth System Sciences, 2009, 13, 2031-2037.	1.9	25
103	Satellites Detect a Methane Ultra-emission Event from an Offshore Platform in the Gulf of Mexico. Environmental Science and Technology Letters, 2022, 9, 520-525.	3.9	25
104	3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 149, 200-214.	4.9	23
105	On the experimental values of the water surface tension used in some textbooks. American Journal of Physics, 2002, 70, 705-709.	0.3	21
106	Gridding Artifacts on Medium-Resolution Satellite Image Time Series: MERIS Case Study. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49, 2601-2611.	2.7	21
107	Differences Between OCOâ€2 and GOMEâ€2 SIF Products From a Modelâ€Data Fusion Perspective. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3143-3157.	1.3	17
108	Performance assessment of onboard and scene-based methods for Airborne Prism Experiment spectral characterization. Applied Optics, 2011, 50, 4755.	2.1	16

#	Article	IF	Citations
109	Sensitivity analysis of the fraunhofer line discrimination method for the measurement of chlorophyll fluorescence using a field spectroradiometer., 2007,,.		15
110	New Cloud Detection Algorithm for Multispectral and Hyperspectral Images: Application to ENVISAT/MERIS and PROBA/CHRIS Sensors. , 2006, , .		14
111	Glacier Ice Surface Properties in Southâ€West Greenland Ice Sheet: First Estimates From PRISMA Imaging Spectroscopy Data. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	13
112	Cuidados enfermeros en Cuidados Paliativos: Análisis, consensos y retos. Index De Enfermeria, 2011, 20, 71-75.	0.2	12
113	The processing chain and Cal/Val operations of the future hyperspectral satellite mission EnMAP. , 2010, , .		11
114	SpecCal: Novel software for in-field spectral characterization of high-resolution spectrometers. Computers and Geosciences, 2011, 37, 1685-1691.	2.0	11
115	The ESA globAlbedo project: Algorithm. , 2012, , .		11
116	Reply to Magnani et al.: Linking large-scale chlorophyll fluorescence observations with cropland gross primary production. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2511.	3.3	11
117	Optimal estimation of snow and ice surface parameters from imaging spectroscopy measurements. Remote Sensing of Environment, 2021, 264, 112613.	4.6	11
118	Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches. Surveys in Geophysics, 2019, 40, 657-687.	2.1	10
119	Cloud detection for CHRIS/Proba hyperspectral images. , 2005, , .		9
120	Coupled retrieval of the three phases of water from spaceborne imaging spectroscopy measurements. Remote Sensing of Environment, 2020, 242, 111708.	4.6	9
121	CHRIS/Proba Toolbox for hyperspectral and multiangular data exploitations. , 2009, , .		6
122	Nanogoniometry with Scanning Force Microscopy: A Model Study of CdTe Thin Films. Small, 2007, 3, 474-480.	5.2	5
123	Characterization of the atmosphere during SEN2FLEX 2005 field campaign. Journal of Geophysical Research, 2008, 113, .	3.3	5
124	Multi-resolution spatial unmixing for MERIS and Landsat image fusion. , 2010, , .		5
125	Recent advances in global monitoring of terrestrial sun-induced chlorophyll fluorescence. , 2016, , .		5
126	Assessment of the 1.75 μm absorption feature for gypsum estimation using laboratory, air- and spaceborne hyperspectral sensors. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 69-83.	1.4	5

#	Article	IF	Citations
127	Atmospheric Components Determination From Ground-Level Measurements During the Spectra Barax Campaigns (SPARC) Field Campaigns. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45, 2778-2793.	2.7	4
128	Overview of the EnMAP imaging spectroscopy mission. , 2016, , .		4
129	Remote sensing of chlorophyll fluorescence for estimation of stress in vegetation. recommendations for future missions. , 2007, , .		3
130	Can we retrieve vegetation photosynthetic capacity paramter from solar-induced fluorescence?. , 2016, , .		3
131	The EnMAP Mission: From Observation Request to Data Delivery. , 2019, , .		3
132	The Enmap German Spaceborne Imaging Spectroscopy Mission: Update and Highlights of Recent Preparatory Activities. , 2020, , .		3
133	Atmospheric correction algorithm for multiangular satellite measurements in the solar spectrum. , 2004, , .		2
134	Modelling spatial and spectral systematic noise patterns on CHRIS/PROBA hyperspectral data. , 2006, , .		2
135	Nonlinear retrieval of atmospheric profiles from MetOp-IASI and MTG-IRS data. , 2010, , .		2
136	Multitemporal fusion of Landsat and MERIS images. , 2011, , .		2
137	Engeomap and Ensomap: Software Interfaces for Mineral and Soil Mapping under Development in the Frame of the Enmap Mission. , $2018, \ldots$		2
138	Guest Editorial: International Space Science Institute (ISSI) Workshop on Space-Borne Imaging Spectroscopy for Exploring the Earth's Ecosystems. Surveys in Geophysics, 2019, 40, 297-301.	2.1	2
139	The EnMAP Satellite –Data Product Validation Activities. , 2021, , .		2
140	EnMAP radiometric inflight calibration, post-launch product validation, and instrument characterization activities. , 2015, , .		1
141	The Imaging Spectroscopy Mission Enmap–Its Status and Expected Products. , 2018, , .		1
142	The Enmap German Imaging Spectroscopy Mission: Status and Summary of Preparatory Activities. , 2018, , .		1
143	A Coupled Retrieval Of Columnar Water Vapor and Canopy Water Content From Spaceborne Hyperspectral Measurements. , 2019, , .		1
144	Assessing the radiometric impact of the Sentinel 2 orthorectification process., 2021,,.		1

#	Article	IF	CITATIONS
145	The EnMAP Satellite - Mission Status and Science Preparatory Activities. , 2021, , .		1
146	Scene-based spectral calibration assessment of high spectral resolution imaging spectrometers. Optics Express, 2009, 17, 11603.	1.7	1
147	Special issue on remote sensing of greenhouse gas emissions. Remote Sensing of Environment, 2022, 277, 113069.	4.6	1
148	Remote sensing of sun-induced chlorophyll fluorescence at different scales. , 2014, , .		0
149	Rare earth element detection from near-field to space - samarium detection using the REEMAP algorithm. , $2016, $		0
150	Preparatory activities for the German spaceborne imaging spectrometer mission EnMAP., 2017,,.		0
151	Assessing the Use of Multiple Constraints and Ancillary Data to Support Scope Model Inversion in a Experimental Grassland. , 2018, , .		0
152	Pysically Based Data Fusion Between Airborne Lidar and Hyperspectral Data: Geometric and Radiometric Synergies. , 2018, , .		O