Wen-Wei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6409649/publications.pdf

Version: 2024-02-01

146 papers 5,406 citations

37 h-index

94433

91884 69 g-index

147 all docs

147 docs citations

147 times ranked

7409 citing authors

#	Article	IF	CITATIONS
1	In situatomic-scale observation of the conversion behavior in a Cu-Zn alloy for twinnability enhancement. Applied Surface Science, 2022, 573, 151602.	6.1	5
2	In Situ Atomicâ€6cale Observation of Monolayer MoS ₂ Devices under Highâ€Voltage Biasing via Transmission Electron Microscopy. Small, 2022, 18, e2106411.	10.0	5
3	In Situ Atomicâ€Scale Observation of Monolayer MoS ₂ Devices under Highâ€Voltage Biasing via Transmission Electron Microscopy (Small 7/2022). Small, 2022, 18, .	10.0	1
4	In situ TEM investigation of indium oxide/titanium oxide nanowire heterostructures growth through solid state reactions. Materials Characterization, 2022, 187, 111832.	4.4	3
5	Electronic Interactions and Charge-Transfer Dynamics for a Series of Yolk–Shell Nanocrystals: Implications for Photocatalysis. ACS Applied Nano Materials, 2022, 5, 8404-8416.	5.0	8
6	Observing resistive switching behaviors in single Ta2O5 nanotube-based memristive devices. Materials Today Nano, 2022, 18, 100212.	4.6	4
7	Mimic Drug Dosage Modulation for Neuroplasticity Based on Chargeâ€Trap Layered Electronics. Advanced Functional Materials, 2021, 31, 2005182.	14.9	10
8	In-situ Transmission Electron Microscope Investigation of Atomic-scale Titanium Silicide Monolayer Superlattice. Scripta Materialia, 2021, 193, 6-11.	5.2	4
9	Atomic-scale silicidation of low resistivity Ni-Si system through in-situ TEM investigation. Applied Surface Science, 2021, 538, 148129.	6.1	10
10	Polarizationâ€Resolved Broadband MoS ₂ /Black Phosphorus/MoS ₂ Optoelectronic Memory with Ultralong Retention Time and Ultrahigh Switching Ratio. Advanced Functional Materials, 2021, 31, 2100781.	14.9	33
11	Pollen-Mimetic Metal–Organic Frameworks with Tunable Spike-Like Nanostructures That Promote Cell Interactions to Improve Antigen-Specific Humoral Immunity. ACS Nano, 2021, 15, 7596-7607.	14.6	17
12	In situ atomic-scale TEM observation of Ag nanoparticle-mediated coalescence in liquids. Applied Surface Science, 2021, 546, 149057.	6.1	4
13	A novel high-performance and energy-efficient RRAM device with multi-functional conducting nanofilaments. Nano Energy, 2021, 82, 105717.	16.0	27
14	In situ manipulation of E-beam irradiation-induced nanopore formation on molybdenum oxide nanowires. Applied Surface Science, 2021, 544, 148874.	6.1	4
15	Supercritical CO ₂ â€Assisted SiO <i>>_x</i> /Carbon Multiâ€Layer Coating on Si Anode for Lithiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2104135.	14.9	59
16	Structural Analysis and Performance in a Dualâ€Mechanism Conductive Filament Memristor. Advanced Electronic Materials, 2021, 7, 2100605.	5.1	19
17	Atomic-scale investigation of Na3V2(PO4)3 formation process in chemical infiltration via in situ transmission electron microscope for solid-state sodium batteries. Nano Energy, 2021, 87, 106144.	16.0	12
18	Atomic-scale investigation of Lithiation/Delithiation mechanism in High-entropy spinel oxide with superior electrochemical performance. Chemical Engineering Journal, 2021, 420, 129838.	12.7	53

#	Article	IF	CITATIONS
19	Atomic-Scale Investigation of Electromigration with Different Directions of Electron Flow into High-Density Nanotwinned Copper through In Situ HRTEM. Acta Materialia, 2021, 219, 117250.	7.9	28
20	Observing Growth and Crystallization of Au@ZnO Core–Shell Nanoparticles by ⟨i⟩In Situ⟨/i⟩ Liquid Cell Transmission Electron Microscopy: Implications for Photocatalysis and Gas-Sensing Applications. ACS Applied Nano Materials, 2021, 4, 612-620.	5.0	8
21	Dynamic observation on the functional metal oxide conversion behaviors in Fe3O4/ZnO heterostructures. Scripta Materialia, 2020, 177, 192-197.	5.2	6
22	Atomic Imaging of Molybdenum Oxide Nanowires with Unique and Complex Periodicity by Advanced Electron Microscopy. Nano Letters, 2020, 20, 1510-1516.	9.1	7
23	<i>In situ</i> TEM investigation of electron beam-induced ultrafast chemical lithiation for charging. Journal of Materials Chemistry A, 2020, 8, 648-655.	10.3	13
24	Atomicâ€Scale Fabrication of Inâ€Plane Heterojunctions of Few‣ayer MoS ₂ via In Situ Scanning Transmission Electron Microscopy. Small, 2020, 16, e1905516.	10.0	29
25	Applications of p-n homojunction ZnO nanowires to one-diode one-memristor RRAM arrays. Scripta Materialia, 2020, 187, 439-444.	5.2	19
26	Investigation of Indium Oxide Nanowire Transform to Indium Zinc Oxide (IZO) Via Solid State Reactions. ECS Transactions, 2020, 97, 105-108.	0.5	0
27	Bioinspired Engineering of a Bacteriumâ€Like Metal–Organic Framework for Cancer Immunotherapy. Advanced Functional Materials, 2020, 30, 2003764.	14.9	17
28	Phase Variations and Layer Epitaxy of 2D PdSe ₂ Grown on 2D Monolayers by Direct Selenization of Molecular Pd Precursors. ACS Nano, 2020, 14, 11677-11690.	14.6	10
29	Enhancement in the Detection Ability of Metal Oxide Sensors Using Defectâ€Rich Polycrystalline Nanofiber Devices. Global Challenges, 2020, 4, 2000041.	3.6	1
30	Dynamic Observation of Electromigration in High Density Electroplated Nanotwinned Copper through in-Situ TEM. ECS Transactions, 2020, 97, 145-148.	0.5	1
31	A Strategy to Synthesize Ultrahigh-N-Doped Hierarchical Carbons via Induced β-Sheet from Silk Fibroin by <i>In Situ</i> Electrogelation/Electropolymerization. ACS Applied Energy Materials, 2020, 3, 3596-3608.	5.1	3
32	Atomic-Scale Localized Thinning and Reconstruction of Two-Dimensional WS ₂ Layers through <i>In Situ</i> Transmission Electron Microscopy/Scanning Transmission Electron Microscopy. Journal of Physical Chemistry C, 2020, 124, 14935-14940.	3.1	12
33	Observing topotactic phase transformation and resistive switching behaviors in low power SrCoOx memristor. Nano Energy, 2020, 72, 104683.	16.0	33
34	Fewâ€Layer MoS ₂ : Atomicâ€Scale Fabrication of Inâ€Plane Heterojunctions of Fewâ€Layer MoS ₂ via In Situ Scanning Transmission Electron Microscopy (Small 3/2020). Small, 2020, 16, 2070015.	10.0	0
35	In situ atomic scale investigation of Li7La3Zr2O12-based Li+-conducting solid electrolyte during calcination growth. Nano Energy, 2020, 71, 104625.	16.0	28
36	Ultra-high annealing twin density in <211>-oriented Cu films. Scripta Materialia, 2020, 184, 46-51.	5.2	4

#	Article	IF	Citations
37	A Novel Three-Dimensional High Density Vertical Rram Arrays with Reduced Leakage Current. ECS Meeting Abstracts, 2020, MA2020-01, 1298-1298.	0.0	O
38	A Triode Device with a Gate Controllable Schottky Barrier: Germanium Nanowire Transistors and Their Applications. Small, 2019, 15, 1900865.	10.0	2
39	Low Power Consumption Nanofilamentary ECM and VCM Cells in a Single Sidewall of Highâ€Density VRRAM Arrays. Advanced Science, 2019, 6, 1902363.	11.2	47
40	High on/off ratio black phosphorus based memristor with ultra-thin phosphorus oxide layer. Applied Physics Letters, 2019, 115 , .	3.3	42
41	Sandwich-Nanostructured n-Cu ₂ O/AuAg/p-Cu ₂ O Photocathode with Highly Positive Onset Potential for Improved Water Reduction. ACS Applied Materials & Interfaces, 2019, 11, 38625-38632.	8.0	30
42	Electron Beam Irradiation-Induced Deoxidation and Atomic Flattening on the Copper Surface. ACS Applied Materials & Deoxidation 11, 40909-40915.	8.0	9
43	In Situ Analysis of Growth Behaviors of Cu ₂ 0 Nanocubes in Liquid Cell Transmission Electron Microscopy. Analytical Chemistry, 2019, 91, 9665-9672.	6.5	9
44	<i>In situ</i> TEM observation of Au–Cu ₂ O core–shell growth in liquids. Nanoscale, 2019, 11, 10486-10492.	5.6	17
45	Unique amorphization-mediated growth to form heterostructured silicide nanowires by solid-state reactions. Materials and Design, 2019, 169, 107674.	7.0	2
46	Sub-nA Low-Current HZO Ferroelectric Tunnel Junction for High-Performance and Accurate Deep Learning Acceleration. , 2019, , .		34
47	Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy, 2019, 56, 322-329.	16.0	125
48	Solidâ€State Diffusional Behaviors of Functional Metal Oxides at Atomic Scale. Small, 2018, 14, 1702877.	10.0	4
49	<i>In Situ</i> Investigation of Defect-Free Copper Nanowire Growth. Nano Letters, 2018, 18, 778-784.	9.1	15
50	Facile synthesis of mesoporous NiFe 2 O 4 /CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors. Applied Surface Science, 2018, 433, 1100-1112.	6.1	92
51	Fabrication of (111) -Oriented Nanotwinned Au Films for Au-to-Au Direct Bonding. Materials, $2018,11,2287.$	2.9	6
52	Dynamics of Nanoscale Dendrite Formation in Solution Growth Revealed Through in Situ Liquid Cell Electron Microscopy. Nano Letters, 2018, 18, 6427-6433.	9.1	38
53	Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM. Nano Energy, 2018, 53, 871-879.	16.0	44
54	Observing phase transformation in CVD-grown MoS ₂ <i>via</i> atomic resolution TEM. Chemical Communications, 2018, 54, 9941-9944.	4.1	11

#	Article	IF	Citations
55	Flexible Heteroepitaxy Photoelectrode for Photo-electrochemical Water Splitting. ACS Applied Energy Materials, 2018, 1, 3900-3907.	5.1	21
56	Core-Shell Pd ₉ Ru@Pt on Functionalized Graphene for Methanol Electrooxidation. Journal of the Electrochemical Society, 2018, 165, H365-H373.	2.9	5
57	Transparent Antiradiative Ferroelectric Heterostructure Based on Flexible Oxide Heteroepitaxy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30574-30580.	8.0	24
58	Ni/NiO/HfO ₂ Core/Multishell Nanowire ReRAM Devices with Excellent Resistive Switching Properties. Advanced Electronic Materials, 2018, 4, 1800256.	5.1	12
59	Observing Solid-State Formation of Oriented Porous Functional Oxide Nanowire Heterostructures by <i>in Situ</i> TEM. Nano Letters, 2018, 18, 6064-6070.	9.1	8
60	Observation of Resistive Switching Behavior in Crossbar Core–Shell Ni/NiO Nanowires Memristor. Small, 2018, 14, 1703153.	10.0	58
61	In-situ TEM observation of Multilevel Storage Behavior in low power FeRAM device. Nano Energy, 2017, 34, 103-110.	16.0	33
62	Direct Observation of Dualâ€Filament Switching Behaviors in Ta ₂ O ₅ â€Based Memristors. Small, 2017, 13, 1603116.	10.0	85
63	Facile production of graphene nanosheets comprising nitrogen-doping through in situ cathodic plasma formation during electrochemical exfoliation. Journal of Materials Chemistry C, 2017, 5, 2597-2602.	5.5	31
64	Flexible ferroelectric element based on van der Waals heteroepitaxy. Science Advances, 2017, 3, e1700121.	10.3	174
65	Dynamic observation of reversible lithium storage phenomena in hybrid supercapacitor devices. Nano Energy, 2017, 41, 494-500.	16.0	17
66	In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO ₂ -Based Energy Storage Devices. Analytical Chemistry, 2017, 89, 9671-9675.	6.5	10
67	In Situ Observation of Au Nanostructure Evolution in Liquid Cell TEM. Journal of Physical Chemistry C, 2017, 121, 26069-26075.	3.1	22
68	Carbon Nanotube/Nitrogen-Doped Reduced Graphene Oxide Nanocomposites and Their Application in Supercapacitors. Journal of Nanoscience and Nanotechnology, 2017, 17, 5366-5373.	0.9	10
69	Dielectric Engineering of a Boron Nitride/Hafnium Oxide Heterostructure for Highâ€Performance 2D Field Effect Transistors. Advanced Materials, 2016, 28, 2062-2069.	21.0	65
70	Synthesis of single-crystalline Ge ₁ Sb ₂ Te ₄ nanoplates in solution phase. CrystEngComm, 2016, 18, 2244-2246.	2.6	1
71	A solid-state cation exchange reaction to form multiple metal oxide heterostructure nanowires. Nanoscale, 2016, 8, 17039-17043.	5.6	8
72	Observing the evolution of graphene layers at high current density. Nano Research, 2016, 9, 3663-3670.	10.4	21

#	Article	IF	Citations
73	High Mobility MoS ₂ Transistor with Low Schottky Barrier Contact by Using Atomic Thick hâ€BN as a Tunneling Layer. Advanced Materials, 2016, 28, 8302-8308.	21.0	398
74	Oxide Heteroepitaxy for Flexible Optoelectronics. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32401-32407.	8.0	81
75	Observing Growth of Nanostructured ZnO in Liquid. Chemistry of Materials, 2016, 28, 4507-4511.	6.7	34
76	Probing the electrochemical properties of an electrophoretically deposited Co ₃ O ₄ /rGO/CNTs nanocomposite for supercapacitor applications. RSC Advances, 2016, 6, 60578-60586.	3.6	33
77	Surface defect engineering: gigantic enhancement in the optical and gas detection ability of metal oxide sensor. RSC Advances, 2016, 6, 65146-65151.	3.6	10
78	Optimization of the nanotwin-induced zigzag surface of copper by electromigration. Nanoscale, 2016, 8, 2584-2588.	5.6	16
79	Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors. ACS Applied Materials & Interfaces, 2016, 8, 7862-7868.	8.0	76
80	Nickel/Platinum Dual Silicide Axial Nanowire Heterostructures with Excellent Photosensor Applications. Nano Letters, 2016, 16, 1086-1091.	9.1	19
81	Mass transport phenomena in copper nanowires at high current density. Nano Research, 2016, 9, 1071-1078.	10.4	14
82	Metal silicide nanowires. Japanese Journal of Applied Physics, 2015, 54, 07JA04.	1.5	6
82	Metal silicide nanowires. Japanese Journal of Applied Physics, 2015, 54, 07JA04. Switching Kinetic of VCMâ€Based Memristor: Evolution and Positioning of Nanofilament. Advanced Materials, 2015, 27, 5028-5033.	1.5 21.0	6
	Switching Kinetic of VCMâ€Based Memristor: Evolution and Positioning of Nanofilament. Advanced		
83	Switching Kinetic of VCMâ€Based Memristor: Evolution and Positioning of Nanofilament. Advanced Materials, 2015, 27, 5028-5033. Low Interface Trap Densities and Enhanced Performance of AlGaN/GaN MOS High- Electron Mobility Transistors Using Thermal Oxidized Y ₂ 0 _{18klt;/sub> Interlayer. IEEE}	21.0	176
83	Switching Kinetic of VCMâ€Based Memristor: Evolution and Positioning of Nanofilament. Advanced Materials, 2015, 27, 5028-5033. Low Interface Trap Densities and Enhanced Performance of AlGaN/GaN MOS High- Electron Mobility Transistors Using Thermal Oxidized Y ₂ 3 Interlayer. IEEE Electron Device Letters, 2015, 36, 1284-1286. The different roles of contact materials between oxidation interlayer and doping effect for high	21.0	176
83 84 85	Switching Kinetic of VCMâ€Based Memristor: Evolution and Positioning of Nanofilament. Advanced Materials, 2015, 27, 5028-5033. Low Interface Trap Densities and Enhanced Performance of AlGaN/GaN MOS High- Electron Mobility Transistors Using Thermal Oxidized Y ₂ 31 Interlayer. IEEE Electron Device Letters, 2015, 36, 1284-1286. The different roles of contact materials between oxidation interlayer and doping effect for high performance ZnO thin film transistors. Applied Physics Letters, 2015, 106, 051607. Phosphorus-Doped p–n Homojunction ZnO Nanowires: Growth Kinetics in Liquid and Their	21.0 3.9 3.3	176 14 21
83 84 85	Switching Kinetic of VCMâ∈Based Memristor: Evolution and Positioning of Nanofilament. Advanced Materials, 2015, 27, 5028-5033. Low Interface Trap Densities and Enhanced Performance of AlGaN/GaN MOS High- Electron Mobility Transistors Using Thermal Oxidized Y ₂ O ₃ Interlayer. IEEE Electron Device Letters, 2015, 36, 1284-1286. The different roles of contact materials between oxidation interlayer and doping effect for high performance ZnO thin film transistors. Applied Physics Letters, 2015, 106, 051607. Phosphorus-Doped p–n Homojunction ZnO Nanowires: Growth Kinetics in Liquid and Their Optoelectronic Properties. Chemistry of Materials, 2015, 27, 4216-4221. Self-formed conductive nanofilaments in (Bi, Mn)O for ultralow-power memory devices. Nano Energy,	21.0 3.9 3.3 6.7	176 14 21 28
83 84 85 86	Switching Kinetic of VCMâ€Based Memristor: Evolution and Positioning of Nanofilament. Advanced Materials, 2015, 27, 5028-5033. Low Interface Trap Densities and Enhanced Performance of AlGaN/GaN MOS High- Electron Mobility Transistors Using Thermal Oxidized Y ₂ 0 ₃ Interlayer. IEEE Electron Device Letters, 2015, 36, 1284-1286. The different roles of contact materials between oxidation interlayer and doping effect for high performance ZnO thin film transistors. Applied Physics Letters, 2015, 106, 051607. Phosphorus-Doped p–n Homojunction ZnO Nanowires: Growth Kinetics in Liquid and Their Optoelectronic Properties. Chemistry of Materials, 2015, 27, 4216-4221. Self-formed conductive nanofilaments in (Bi, Mn)O for ultralow-power memory devices. Nano Energy, 2015, 13, 283-290. Direct Observation of Sublimation Behaviors in One-Dimensional In2Se3/In2O3 Nanoheterostructures.	21.0 3.9 3.3 6.7	176 14 21 28

#	Article	IF	CITATIONS
91	In Situ Study of Spinel Ferrite Nanocrystal Growth Using Liquid Cell Transmission Electron Microscopy. Chemistry of Materials, 2015, 27, 8146-8152.	6.7	39
92	Dynamic observation on the growth behaviors in manganese silicide/silicon nanowire heterostructures. Nanoscale, 2015, 7, 1776-1781.	5.6	9
93	Opto-electrical properties of Sb-doped p-type ZnO nanowires. Applied Physics Letters, 2014, 104, .	3.3	25
94	Synthesis and Characterization of One-Dimensional Ag-Doped ZnO/Ga-Doped ZnO Coaxial Nanostructure Diodes. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5183-5191.	8.0	35
95	Interface Engineering for Highâ€Performance Topâ€Gated MoS ₂ Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 6255-6261.	21.0	272
96	Shape control of nickel silicide nanocrystals on stress-modified surface. CrystEngComm, 2014, 16, 1611.	2.6	4
97	Revealing Controllable Nanowire Transformation through Cationic Exchange for RRAM Application. Nano Letters, 2014, 14, 2759-2763.	9.1	44
98	Real Time Observation of the Formation of Hollow Nanostructures through Solid State Reactions. Analytical Chemistry, 2014, 86, 4348-4353.	6.5	6
99	Excellent piezoelectric and electrical properties of lithium-doped ZnO nanowires for nanogenerator applications. Nano Energy, 2014, 8, 291-296.	16.0	48
100	Optoelectronic Properties of Single-Crystalline Zn ₂ GeO ₄ Nanowires. Journal of Physical Chemistry C, 2014, 118, 8194-8199.	3.1	26
101	Dynamic Observation of Phase Transformation Behaviors in Indium(III) Selenide Nanowire Based Phase Change Memory. ACS Nano, 2014, 8, 9457-9462.	14.6	39
102	Single Crystalline CuO Nanowire for Resistive Random Access Memory Application. ECS Meeting Abstracts, 2014, , .	0.0	0
103	Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories. Nano Letters, 2013, 13, 3671-3677.	9.1	327
104	Single-crystalline \hat{I} -Ni2Si nanowires with excellent physical properties. Nanoscale Research Letters, 2013, 8, 290.	5.7	22
105	In Situ TEM and Energy Dispersion Spectrometer Analysis of Chemical Composition Change in ZnO Nanowire Resistive Memories. Analytical Chemistry, 2013, 85, 3955-3960.	6.5	41
106	Phase transformation and thermoelectric properties of bismuth-telluride nanowires. Nanoscale, 2013, 5, 4669.	5. 6	63
107	Measurement of Interlayer Screening Length of Layered Graphene by Plasmonic Nanostructure Resonances. Journal of Physical Chemistry C, 2013, 117, 22211-22217.	3.1	44
108	Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties. Nanoscale, 2013, 5, 5086.	5.6	34

#	Article	IF	Citations
109	Improved Performance of ZnO-Based Resistive Memory by Internal Diffusion of Ag Atoms. Journal of Nanoscience and Nanotechnology, 2012, 12, 6271-6275.	0.9	2
110	Single-crystalline Ge nanowires and Cu3Ge/Ge nano-heterostructures. CrystEngComm, 2012, 14, 4570.	2.6	11
111	Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures. Nanoscale, 2012, 4, 4702.	5.6	26
112	In Situ Observation of Dehydration-Induced Phase Transformation from Na ₂ Nb ₂ O ₆ â€"H ₂ O to NaNbO ₃ . Journal of Physical Chemistry C, 2012, 116, 22261-22265.	3.1	23
113	Well-aligned ZnOnanowires with excellent field emission and photocatalytic properties. Nanoscale, 2012, 4, 1471-1475.	5.6	107
114	Kinetic Competition Model and Size-Dependent Phase Selection in 1-D Nanostructures. Nano Letters, 2012, 12, 3115-3120.	9.1	40
115	Resistive switching of Au/ZnO/Au resistive memory: an in situ observation of conductive bridge formation. Nanoscale Research Letters, 2012, 7, 559.	5.7	53
116	High-yield synthesis of ZnO nanowire arrays and their opto-electrical properties. Nanoscale, 2012, 4, 1476-1480.	5.6	27
117	Taper PbZr _{0.2} Ti _{0.8} O ₃ Nanowire Arrays: From Controlled Growth by Pulsed Laser Deposition to Piezopotential Measurements. ACS Nano, 2012, 6, 2826-2832.	14.6	29
118	Growth and properties of single-crystalline Ge nanowires and germanide/Ge nano-heterostructures. CrystEngComm, 2012, 14, 53-58.	2.6	9
119	Controlled growth of the silicide nanostructures on Si bicrystal nanotemplate at a precision of a few nanometres. CrystEngComm, 2011, 13, 3967.	2.6	8
120	Heterogeneous and Homogeneous Nucleation of Epitaxial NiSi ₂ in [110] Si Nanowires. Journal of Physical Chemistry C, 2011, 115, 397-401.	3.1	24
121	Growth of CulnSe2and In2Se3/CulnSe2Nano-Heterostructures through Solid State Reactions. Nano Letters, 2011, 11, 4348-4351.	9.1	46
122	Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization. Journal of the Electrochemical Society, 2011, 158, H1161.	2.9	166
123	Low Resistivity Metal Silicide Nanowires with Extraordinarily High Aspect Ratio for Future Nanoelectronic Devices. ACS Nano, 2011, 5, 9202-9207.	14.6	22
124	The Influence of Surface Oxide on the Growth of Metal/Semiconductor Nanowires. Nano Letters, 2011, 11, 2753-2758.	9.1	23
125	Growth of single-crystalline cobalt silicide nanowires with excellent physical properties. Journal of Applied Physics, 2011, 110, .	2.5	18
126	The operating mechanism of Schottky-gate nanosensors. , 2011, , .		0

#	Article	IF	Citations
127	Investigation and Effects of Wafer Bow in 3D Integration Bonding Schemes. Journal of Electronic Materials, 2010, 39, 2605-2610.	2.2	3
128	Stability of nanoscale twins in copper under electric current stressing. Journal of Applied Physics, 2010, 108, 066103.	2.5	14
129	Cobalt silicide nanocables grown on Co films: synthesis and physical properties. Nanotechnology, 2010, 21, 485602.	2.6	12
130	Growth of Multiple Metal/Semiconductor Nanoheterostructures through Point and Line Contact Reactions. Nano Letters, 2010, 10, 3984-3989.	9.1	31
131	In-situ transmission electron microscopy study of nanotwinned copper under electromigration. , 2010, , .		1
132	Multiple Heterostructures of Ni2Si/Si Formed by the Point Contact Reaction. ECS Transactions, 2009, 25, 41-44.	0.5	0
133	Cobalt Silicide Nanostructures: Synthesis, Electron Transport, and Field Emission Properties. Crystal Growth and Design, 2009, 9, 4514-4518.	3.0	36
134	Homogeneous Nucleation of Epitaxial CoSi ₂ and NiSi in Si Nanowires. Nano Letters, 2009, 9, 2337-2342.	9.1	66
135	Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties. Applied Physics Letters, 2008, 93, 113109.	3.3	37
136	Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science, 2008, 321, 1066-1069.	12.6	352
137	Single Crystalline PtSi Nanowires, PtSi/Si/PtSi Nanowire Heterostructures, and Nanodevices. Nano Letters, 2008, 8, 913-918.	9.1	166
138	In-situ TEM Observation of Repeating Events of Nucleation in Epitaxial Growth of Nano CoSi ₂ in Nanowires of Si. Nano Letters, 2008, 8, 2194-2199.	9.1	94
139	Metal Silicide Nanowires. ECS Transactions, 2007, 11, 3-6.	0.5	4
140	Direct observation of electromigration-induced surface atomic steps in Cu lines by in situ transmission electron microscopy. Applied Physics Letters, 2007, 90, 203101.	3.3	26
141	Effects of Strain Field of Si Bicrystal on the Formation of Nanoscale Silicides. ECS Transactions, 2007, 11, 83-88.	0.5	0
142	In situ Control of Atomic-Scale Si Layer with Huge Strain in the Nanoheterostructure NiSi/Si/NiSi through Point Contact Reaction. Nano Letters, 2007, 7, 2389-2394.	9.1	136
143	Growth of High-Density Titanium Silicide Nanowires in a Single Direction on a Silicon Surface. Nano Letters, 2007, 7, 885-889.	9.1	56
144	Synthesis and growth mechanism of pentagonal Cu nanobats with field emission characteristics. Nanotechnology, 2006, 17, 719-722.	2.6	40

#	Article	lF	CITATIONS
145	In-situ Microscopic Study of Cu Intragranular Electromigration. Materials Research Society Symposia Proceedings, 2005, 907, 1.	0.1	O
146	Revealing Resistive Switching Mechanism in <scp> CaFeO _x </scp> Perovskite System with <scp>Electroformingâ€Free</scp> and Reset <scp>Voltageâ€Controlled</scp> Multilevel Resistance Characteristics. Energy and Environmental Materials, 0, , .	12.8	0